Featured Research

from universities, journals, and other organizations

Newly Found Target In Brain May Lead To Novel Parkinson's Disease Therapies

Date:
October 16, 1998
Source:
Yerkes Regional Primate Research Center
Summary:
Neuroscientists at the Yerkes Primate Research Center of Emory University are developing a potential new approach for alleviating the debilitating motor deficits in patients with Parkinson's disease. Their preliminary findings suggest that blocking the activity of a specific class of receptors in the brain area responsible for muscle movement could eventually help patients in the later stages of Parkinson's, when traditional medication fails and begins to cause debilitating side effects.

ATLANTA, Ga.--Neuroscientists at the Yerkes Primate Research Center of Emory University are developing a potential new approach for alleviating the debilitating motor deficits in patients with Parkinson's disease.

Their preliminary findings suggest that blocking the activity of a specific class of receptors in the brain area responsible for muscle movement could eventually help patients in the later stages of Parkinson's, when traditional medication fails and begins to cause debilitating side effects.

Yoland Smith, Ph.D., will describe his discovery of the location of these receptors at the Sixth Triennial Meeting of the International Basal Ganglia Society in Brewster Mass., on October 16. Dr. Smith's mapping and characterization of the receptors lends new hope to finding a combination therapy that might make smaller doses of L-dopa work longer without side effects.

Parkinson's disease results from a deficiency of the neurotransmitter dopamine in a group of brain structures called the basal ganglia, a network of neurons which controls movement. Symptoms include stooped posture, tremors, rigidity of movement and even periodic "freezing" of muscles, making movement impossible. Taken several times a day, L-dopa restores dopamine levels and the ability to move more freely with less trembling and rigidity. But L-dopa remains effective only for a period of a few years. After that, the drug loses its potency and begins to cause severe side effects, such as jerky, involuntary movements called dyskinesia. For some patients, the side effects are so severe they cannot sit still, walk, or hold a utensil. Thus, the social and economic costs of the disease are high, especially because people often live with the disease for 10 to 20 years.

In a normal brain, neurons release a common neurotransmitter called glutamate. It is abundant throughout the brain, playing a role in communication between the various types of neurons. Without glutamate, the brain would seize up and cease to function. Researchers have determined over the past few years that for Parkinson's patients, insufficient levels of dopamine induce one tiny group of cells in the basal ganglia, called the subthalamic nucleus, to dramatically increase their activity. This hyperactivity means they produce extra glutamate -- so much that it overloads the glutamate receptors. Scientists believe that this extra glutamate causes the movement problems in Parkinson's; in fact, in both animals and humans, a small lesion made in the subthalamic nucleus can abolish most of the symptoms of the disease. However, not all Parkinson's patients are good candidates for this procedure. It is also invasive and expensive, making it unavailable for many people.

"So theoretically, a drug that blocks the activity of glutamate released from neurons in the subthalamic nucleus should have the same beneficial effects as the surgery," says Dr. Smith. "However, because glutamate is vital everywhere in the brain, the trick is to block it only in the areas where there's too much."

There are two different types of glutamate receptors in the brain. One type mediates rapid neuronal communication. Earlier efforts to target those cells in Parkinson's disease animal models adversely affected glutamate throughout the entire brain. The second type of glutamate receptor, recently discovered, mediates the slow communication between neurons. These are called metabotropic receptors. "We've just started having some success in finding where they are in the basal ganglia and what they do," says Smith.

Glutamate is released at a synapse, a very short gap between two neurons which allows them to communicate. Usually receptors involved in fast glutamate activity are found in the center of the synapse. "However," Dr. Smith explains, "we found that the metabotropic receptors are located not in the center of the synapse, but on its distant edge." Since the receptor is relatively far from the site of glutamate release, a large amount of glutamate is needed to jump the gap. In a normal brain, the need to jump the gap for slow communication is not constant, required only at certain times. In Parkinson's disease, the overflow of glutamate remains constant and floods the receptors. This suggests that these receptors are likely targets for treating Parkinson's disease.

Dr. Smith hopes next to identify highly specific drugs that will selectively block only these slow-communication receptors in the subthalamic nucleus. "Blocking them could help change the glutamate transmission from subthalamic neurons without affecting the whole brain's activity," he said.

To locate the metabotropic receptors, Dr. Smith uses a technique called immunocythochemistry in which antibodies labeled with gold particles bind to the receptors. Using an electron microscope, the "labeled" receptors show up in gold, creating a map of every synapse where the receptors are found. Using this technique, Dr. Smith and his colleagues have mapped the brains of rats and monkeys to find where those metabotropic receptors are located.

Other studies being reported from Dr. Smith's laboratory at this meeting involve defining the location of these receptors in other parts of the basal ganglia, to aid in understanding their basic functioning in the normal brain.

These studies are funded by grants from the National Institutes of Health and the American Parkinson's Disease Association. Dr. Smith is part of a multi-disciplinary research team developing novel pharmacological and surgical therapies for Parkinson's disease.

The Yerkes Primate Center is part of the Woodruff Health Sciences Center of Emory University, and is the oldest scientific institute in the world dedicated to primate research. Its programs cover a wide range of biomedical and behavioral sciences.


Story Source:

The above story is based on materials provided by Yerkes Regional Primate Research Center. Note: Materials may be edited for content and length.


Cite This Page:

Yerkes Regional Primate Research Center. "Newly Found Target In Brain May Lead To Novel Parkinson's Disease Therapies." ScienceDaily. ScienceDaily, 16 October 1998. <www.sciencedaily.com/releases/1998/10/981016075643.htm>.
Yerkes Regional Primate Research Center. (1998, October 16). Newly Found Target In Brain May Lead To Novel Parkinson's Disease Therapies. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1998/10/981016075643.htm
Yerkes Regional Primate Research Center. "Newly Found Target In Brain May Lead To Novel Parkinson's Disease Therapies." ScienceDaily. www.sciencedaily.com/releases/1998/10/981016075643.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins