Featured Research

from universities, journals, and other organizations

Scientists Locate A Genetic 'On/Off Switch' In Diphtheria; Find May Yield Antibiotics That Won't Boost Bacterial Resistance

Date:
November 6, 1998
Source:
Brandeis University
Summary:
Researchers at Brandeis University and the Boston University School of Medicine have pinpointed a genetic repressor that can single-handedly morph diphtheria from a mild-mannered bacterium into a lethal parasite. This tiny complex could prove to be the Achilles' tendon of resistant strains of killers such as diphtheria, staph, and flesh-eating bacteria, opening them up to a new class of drugs that won't induce resistance.

WALTHAM, Mass. -- Researchers at Brandeis University and the Boston University School of Medicine have pinpointed a genetic repressor that can single-handedly morph diphtheria from a mild-mannered bacterium into a lethal parasite. This tiny complex could prove to be the Achilles' tendon of resistant strains of killers such as diphtheria, staph, and flesh-eating bacteria, opening them up to a new class of drugs that won't induce resistance.

The work of the team led by Dagmar Ringe, professor of biochemistry at Brandeis' Rosenstiel Basic Medical Sciences Research Center, appeared in a recent issue of Nature.

Ringe's mapping of the structure of the powerful yet minuscule DtxR repressor -- a billion billion of which could fit on the head of a pin -- doesn't offer insights solely into diphtheria, where DtxR functions. "DtxR is a prototype for the activity of many other virulent bacteria," she says. "Most pathogenic bacteria, including those responsible for tetanus, syphilis, tuberculosis, and botulism, have their own versions of this repressor."

Scientists have known for some time that these bacteria somehow rely on metal ions to become virulent, but the exact mechanism has remained elusive. Ringe and her colleagues used X-ray crystallography to unmask, atom by atom, the exact structure of DtxR, which holds the key to diphtheria's Jekyll-and-Hyde behavior. They found that this repressor, normally tightly latched to the bacterial DNA, has two binding sites for iron ions; when iron grows scarce, the repressor falls off the DNA strand, allowing expression of a gene that goads the bacterium into attacking its host's cells.

"Until now, nobody knew just how bacteria translated a shortage of iron into a headlong assault on the body's tissues," Ringe says.

This chain of events is part of the battle our immune system regularly fights with a variety of pernicious bacteria. Upon recognizing that iron-craving bacteria are infiltrating the body, the liver responds by sequestering iron. The battle then escalates, with the bacteria retaliating by attacking the body's cells in the hope of scavenging some iron.

Scientists say the new findings raise the prospect of a novel class of antibiotics that won't foster bacterial resistance; current-generation treatments can lead to resistance in as little as six months. "Today's antibiotics actually strengthen resistant strains of bacteria," notes Gregory Petsko, Gyula and Katica Tauber Professor of Biochemistry and Molecular Pharmacodynamics and director of the Rosenstiel Center at Brandeis. "When they kill off normal strains while leaving resistant strains unaffected, they're essentially selecting for the resistant strains' survival."

"The potential new class of drugs here would be better because rather than killing the bacteria, theyΉd simply prevent the bacteria from becoming virulent and killing you," adds Petsko, who was not involved in this work.

Once 95 percent lethal, diphtheria is no longer a major concern in the developed world. But the former Soviet Union has experienced a sharp recurrence of the disease during the 1990s, and public health officials are watching with alarm as the outbreak trudges westward toward Europe.

Ringe was joined in the work by Andre White and Xiaochun Ding at Brandeis and Johanna C. vanderSpek and John R. Murphy at Boston University. The research was sponsored by the National Institute of Allergy and Infectious Diseases and the Lucille P. Markey Charitable Trust.


Story Source:

The above story is based on materials provided by Brandeis University. Note: Materials may be edited for content and length.


Cite This Page:

Brandeis University. "Scientists Locate A Genetic 'On/Off Switch' In Diphtheria; Find May Yield Antibiotics That Won't Boost Bacterial Resistance." ScienceDaily. ScienceDaily, 6 November 1998. <www.sciencedaily.com/releases/1998/11/981106081451.htm>.
Brandeis University. (1998, November 6). Scientists Locate A Genetic 'On/Off Switch' In Diphtheria; Find May Yield Antibiotics That Won't Boost Bacterial Resistance. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1998/11/981106081451.htm
Brandeis University. "Scientists Locate A Genetic 'On/Off Switch' In Diphtheria; Find May Yield Antibiotics That Won't Boost Bacterial Resistance." ScienceDaily. www.sciencedaily.com/releases/1998/11/981106081451.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) — New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins