Featured Research

from universities, journals, and other organizations

New Discovery May Lead To Control Of Production Of Key Proteins

Date:
April 16, 1999
Source:
Wake Forest University Baptist Medical Center
Summary:
Scientists are closing in on discovering the way that the body regulates critical proteins involved in the front line defense against disease as well as in normal body processes. The discoveries could lead to development of pharmaceuticals to control the body's production of these proteins.

WINSTON-SALEM, N.C. -- Scientists are closing in on discovering the way that the body regulates critical proteins involved in the front line defense against disease as well as in normal body processes.

The discoveries could lead to development of pharmaceuticals to control the body's production of these proteins.

An article in the April 16 issue of Science, for the first time links the destruction of proteins to the destruction of the molecules that create those proteins, called messenger RNA. Gary Brewer, Ph.D., associate professor of microbiology and immunology at Wake Forest University Baptist Medical Center, is a co-author,

Brewer said the messenger RNAs under study encode many proteins of high interest in medicine: cytokines, which are important for immune response -- the defense against disease-- and cell development; oncoproteins, important for both normal cell growth and in the uncontrolled cell growth of cancer; and proteins that directly affect heart function.

The new results build upon previous discoveries by Brewer and his colleagues, dating back to 1986. One key discovery, in 1991, was of a protein that they called AUF1, which binds to the messenger RNA.

"It has been known for some number of years that there are enzymes that are involved in the degradation process of proteins, just as there are enzymes that are involved in the degradation process for messenger RNA," Brewer said.

One enzyme involved in the destruction of proteins is called the proteasome. "One of the implications of this work in terms of mechanism is that this protein, AUF1, binds to the RNA targeting sequences, which makes the messenger RNA unstable," Brewer said.

"How does the degradation of messenger RNA occur? What this paper would seem to indicate is that the proteasome's destruction of AUF1 somehow permits the degradation of the messenger RNA to which AUF1 is binding."

This discovery could lead to ways to control the production of cytokines, oncoproteins and the proteins involved in heart function.

"From a pharmaceutical point of view, it would be advantageous to be able to control the expression of these gene products," Brewer said. "One means to control the expression of these proteins would be to control AUF1 because it determines how much of these messenger RNAs are going to be present in the cells," he said,

For example, he envisioned a drug that enhanced the binding of AUF1 to its RNA target. "If the drug enhanced the binding of this protein, you might predict that you might get less of the cytokine or oncoprotein. If you had a compound that blocked the binding of AUF1 to its RNA target, then you might be synthesizing more of the cytokine or oncoprotein."

Brewer stressed that even the ominous sounding oncoproteins are essential to normal cellular processes.

"There might be situations where it would be advantageous to turn them off. There would be other situations where you might want to turn them on. It may be possible not to just turn them on or off, but modulate expression of cytokines and oncoproteins by controlling the ability of AUF1 to bind to the RNA target."


Story Source:

The above story is based on materials provided by Wake Forest University Baptist Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest University Baptist Medical Center. "New Discovery May Lead To Control Of Production Of Key Proteins." ScienceDaily. ScienceDaily, 16 April 1999. <www.sciencedaily.com/releases/1999/04/990416080858.htm>.
Wake Forest University Baptist Medical Center. (1999, April 16). New Discovery May Lead To Control Of Production Of Key Proteins. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1999/04/990416080858.htm
Wake Forest University Baptist Medical Center. "New Discovery May Lead To Control Of Production Of Key Proteins." ScienceDaily. www.sciencedaily.com/releases/1999/04/990416080858.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins