Featured Research

from universities, journals, and other organizations

Researchers Discover Mechanism Of Cleft Palate Development

Date:
May 3, 1999
Source:
University Of California, San Francisco
Summary:
Researchers led by a team of UC San Francisco scientists have identified the mechanism by which a disfiguring birth defect wreaks its havoc. Cleft palate, the most common craniofacial birth defect in humans, occurs when the two sides of the palate do not properly fuse during fetal development, leaving an opening or cleft in the roof of the mouth.

Researchers led by a team of UC San Francisco scientists have identified the mechanism by which a disfiguring birth defect wreaks its havoc. Cleft palate, the most common craniofacial birth defect in humans, occurs when the two sides of the palate do not properly fuse during fetal development, leaving an opening or cleft in the roof of the mouth.

Earlier research had already established that abnormalities in the gene for Transforming Growth Factor Alpha (TGF-a) were linked to cleft lip and palate syndromes. TGF-a is a growth factor with many known functions yet how it related to cleft palate was a mystery until now.

The inter-institutional group, led by Rik Derynck, PhD, UCSF professor of cell biology in the Department of Growth & Development, and Zena Werb, PhD, UCSF professor of cell biology in the Department of Anatomy, demonstrated that during normal embryonic development, docking of the molecule TGF-a with the Epidermal Growth Factor Receptor (EGFR), results in the production of a class of proteins called matrix metalloproteinases (MMPs).

Using "genetic knock-out" mice specially bred without the EGFR, the researchers learned that after activation of the EGFR, MMPs regulate the closure of the palate. Palate closure must be closely coordinated with the development of the lower jaw, a process regulated by MMPs. Simply put, if EGFR does not function properly when TGF-a joins with it, MMPs are not produced and cleft palates frequently result. The study is reported in the May 1999 issue of the journal Nature Genetics.

"This study has provided a developmental basis for the correlation between EGFR functioning and cleft palate syndrome but also illuminates the development mechanism for palate closure," says Derynck. "The role of this receptor in palate closure is through its ability to induce the activity of proteases. This is an intriguing finding because we believe that this animal study will translate very closely to humans."

With the knowledge that disruption of EGFR function interferes with normal development of the palate, it may be possible for scientists to develop therapies for cleft palate. However, it is believed that the majority of clefts can be attributed to a combination of genetic and environmental factors, which may make it difficult to create an effective therapy.

Co-investigators on the study are Paivi J. Miettinen, former postdoctoral fellow in the UCSF Department of Growth & Development, now an assistant professor at the University of Helsinki; Jennie R. Chin, research specialist, UCSF Department of Anatomy; Lillian Shum, staff scientist, and Harold C. Slavkin, director, both of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH; and Charles F. Shuler, professor, Center for Craniofacial Molecular Biology, University of Southern California.

The study was supported by grants from the National Institutes of Health and the Academy of Finland.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "Researchers Discover Mechanism Of Cleft Palate Development." ScienceDaily. ScienceDaily, 3 May 1999. <www.sciencedaily.com/releases/1999/05/990503041817.htm>.
University Of California, San Francisco. (1999, May 3). Researchers Discover Mechanism Of Cleft Palate Development. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1999/05/990503041817.htm
University Of California, San Francisco. "Researchers Discover Mechanism Of Cleft Palate Development." ScienceDaily. www.sciencedaily.com/releases/1999/05/990503041817.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins