Featured Research

from universities, journals, and other organizations

Rats Operate Robotic Arm Via Brain Activity

Date:
June 23, 1999
Source:
Duke University
Summary:
Researchers at MCP Hahnemann University and Duke University have developed a method for recording brain signals onto electrode arrays in laboratory rats that enable the rats to control a robotic arm without any actual muscle movement.

PHILADELPHIA -- Researchers at MCP Hahnemann University and Duke University have developed a method for recording brain signals onto electrode arrays in laboratory rats that enable the rats to control a robotic arm without any actual muscle movement.

Related Articles


According to the scientists, the achievement demonstrates the likelihood that electrodes may someday be implanted into the brains of humans who have lost limb function, allowing them to control a prosthetic device as they would their own biological limbs. The study is being published in the July 1 issue of Nature Neuroscience.

In experiments, rats were trained to control a robotic arm by pressing a lever to receive a reward. During the rats' lever-pressing, the researchers used arrays of electrodes implanted in the rats' brains to record the simultaneous activity of dozens of neurons in the areas that control muscle movement.

"Identifying which neurons in the brain are responsible for moving the robotic arm was key to our success," said John Chapin, professor of neurobiology and anatomy at MCP Hahnemann University. "Previously, researchers have focused on single neurons in the motor systems. We took a broader look and found that if we could recreate the many signals sent by dozens of neurons at the same time, we could essentially program the movement into the brain."

Once the data were recorded, researchers switched control of the reward from the lever to the implanted electrodes. The rats quickly learned to move the robotic arm to receive the reward solely through brain activity, without actually moving their muscles.

"We were quite surprised that the animals so readily learned that they did not need to actually make the movement to operate the robot; that they only needed to express the brain wave pattern," said Dr. Miguel Nicolelis of Duke University Medical Center, one of the researchers.

"This study breaks new ground in several areas," said Dr. Eberhard Fetz, Department of Physiology and Biophysics, University of Washington School of Medicine, who authored a commentary on the research in the "News and Views" section of Nature Neuroscience. "Unlike comparable studies, this is the first demonstration to prove that simultaneous recordings from large ensembles of neurons can be converted in real time and online to control an external device. Extracting signals directly from the brain to control robotic devices has been a science fiction theme that seems destined to become fact."

Added Chapin, "We believe that we have all the key elements to be able to make this technology one that could, in the not-so-distant future, make a substantial difference in the lives of people who are limited in their physical abilities, but not in their neurological capabilities -- ALS and spinal cord injured patients for instance.

"While there are significant technical obstacles to overcome before we are ready to begin clinical trials on patients, we feel those obstacles are readily surmountable," he said

William Heetderks, Director of the Neural Prosthesis Program for the National Institutes of Health, said the study has implications for a variety of disabilities.

"The most obvious group is individuals with locked-in syndrome who have no means to communicate," Heetderks said. "Other individuals such as those with cerebral palsy and spinal cord injury might also benefit."

Chapin and Nicolelis were part of a research team that included Karen Moxon and Ronald Markowitz, also of MCP Hahnemann University. Funding for this research was provided by the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH) and from the Office of Naval Research (ONR/DARPA).


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Rats Operate Robotic Arm Via Brain Activity." ScienceDaily. ScienceDaily, 23 June 1999. <www.sciencedaily.com/releases/1999/06/990623063013.htm>.
Duke University. (1999, June 23). Rats Operate Robotic Arm Via Brain Activity. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/1999/06/990623063013.htm
Duke University. "Rats Operate Robotic Arm Via Brain Activity." ScienceDaily. www.sciencedaily.com/releases/1999/06/990623063013.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) — Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins