Featured Research

from universities, journals, and other organizations

Response To Cocaine Linked To Biological Clock Genes

Date:
August 16, 1999
Source:
NIH-National Institute Of General Medical Sciences
Summary:
A new study shows that a surprising phenomenon--sensitivity to repeated cocaine exposure--can now be added to the short list of activities linked to genes controlling the biological clock.

A new study shows that a surprising phenomenon--sensitivity to repeated cocaine exposure--can now be added to the short list of activities linked to genes controlling the biological clock.

Researchers funded by the National Institutes of Health (NIH) unearthed the unexpected connection between circadian rhythms in insects and cocaine sensitization, a behavior that occurs in both fruit flies and vertebrates and that has been linked to drug addiction in humans.

In the August 13 issue of Science, Dr. Jay Hirsh and his coworkers Rozi Andretic and Sarah Chaney at the University of Virginia report that fruit flies missing several genes that play a critical role in the insects' internal biological clock did not become sensitized to cocaine, a process in which repeated doses of the drug produce increasingly severe responses.

"This opens up the field of drug studies to thinking about how a totally unexpected set of genes functions in response to drugs," said Dr. Hirsh, the senior author of the report.

Besides enabling the potential development of drugs to treat cocaine addiction, this research holds out the prospect that so-called "clock" genes--which are involved in setting and maintaining the body's internal clock--might have other, as yet undiscovered, roles in the body and brain.

"These important findings illustrate that the clock genes perform other important roles in regulating the physiology of fruit flies, and likely humans," said Dr. Michael Sesma, a neurobiologist at the National Institute of General Medical Sciences, an NIH component that funded the study along with NIH's National Institute on Drug Abuse.

Fruit flies--recognized by many people as unwanted sentinels of overripe bananas--are an extraordinary laboratory tool. Nearly a century of genetic research on fruit flies now permits biologists to mix and match fly genes to probe the function of physiological processes such as nervous system pathways. Importantly, many of the genes discovered in flies and other simple organisms have molecular cousins in humans, and the pathways linking these genes are also very similar across species spanning vast amounts of evolutionary time.

"Because of the genetic similarities in fruit flies and humans, fruit flies can serve as a valuable model to study the complex biological factors underlying drug abuse. This exciting new research has given us a clue to the specific genetic mechanisms that influence vulnerability to addiction. Once clear, these mechanisms could become the basis for predicting who is most at risk for addiction and thus become a major aid in preventing this national health problem," said Dr. Alan I. Leshner, director of the National Institute on Drug Abuse.

For the past several years, Dr. Hirsh has used insect model systems to probe some of the brain's molecular mysteries, such as the circuitry involved in learning, memory, and muscle movement. While researching core communications pathways in the nervous systems of fruit flies, Dr. Hirsh and his colleagues reasoned that cocaine--which hijacks key elements of these communications systems--might be a valuable tool to study the molecular underpinnings of cocaine-induced behavior and addiction.

Last year, the team hit pay dirt, showing that normal fruit flies develop a heightened response to repeated doses of cocaine. The work laid the foundation for further studies elaborating the possible molecular bases for cocaine addiction in people, including the present work and other recently published findings in the current online issue of Current Biology, that implicate tyramine, one of the body's naturally occurring molecules, as the likely perpetrator of cocaine sensitization in fruit flies.

Researchers studying drug addiction or circadian rhythms yearn to understand the molecular actors playing key roles in these and other functions of the brain. The new work should lead the way toward unlocking the secrets behind some of the most basic of humans' and animals' activities--why heart attacks are more likely to strike in the morning and asthma is more likely to occur at night, what makes animals hibernate every winter and how babies know to wake up at precisely the same time each morning, and perhaps even why the summertime drone of cicadas reaches such an uproarious peak every 17 years.


Story Source:

The above story is based on materials provided by NIH-National Institute Of General Medical Sciences. Note: Materials may be edited for content and length.


Cite This Page:

NIH-National Institute Of General Medical Sciences. "Response To Cocaine Linked To Biological Clock Genes." ScienceDaily. ScienceDaily, 16 August 1999. <www.sciencedaily.com/releases/1999/08/990816070120.htm>.
NIH-National Institute Of General Medical Sciences. (1999, August 16). Response To Cocaine Linked To Biological Clock Genes. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1999/08/990816070120.htm
NIH-National Institute Of General Medical Sciences. "Response To Cocaine Linked To Biological Clock Genes." ScienceDaily. www.sciencedaily.com/releases/1999/08/990816070120.htm (accessed September 17, 2014).

Share This



More Mind & Brain News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
'Fat Shaming' Might Actually Cause Weight Gain

'Fat Shaming' Might Actually Cause Weight Gain

Newsy (Sep. 11, 2014) A study for University College London suggests obese people who are discriminated against gain more weight than those who are not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins