Featured Research

from universities, journals, and other organizations

Images Of Enzyme Suggest Way To Improve DNA Sequencing

Date:
August 19, 1999
Source:
Washington University School Of Medicine
Summary:
Like a temperamental copy machine, the most commonly used enzyme in DNA sequencing has a few annoying quirks. It generates pages with blank spots, for example. But new X-ray images of the enzyme at work have suggested a way to fix these problems. The strategy works in the lab and is being tested by several companies in the United States.

St. Louis, Aug. 16, 1999 — Like a temperamental copy machine, the most commonly used enzyme in DNA sequencing has a few annoying quirks. It generates pages with blank spots, for example. But new X-ray images of the enzyme at work have suggested a way to fix these problems. The strategy works in the lab and is being tested by several companies in the United States.

"We expect this will make the enzyme an even better sequencing tool for the Human Genome Project," says Gabriel Waksman, Ph.D., an associate professor of biochemistry and molecular biophysics at Washington University School of Medicine in St. Louis, one of the world’s major sequencing sites. Waksman and colleagues report their findings about the enzyme, Taq DNA polymerase, in the Aug. 17 issue of Proceedings of the National Academy of Sciences.

The Sanger method is the most common method for determining the order of genetic letters, called nucleotides, in DNA. It uses Taq to copy segments of DNA into chains of different lengths. Because Taq comes from a bacterium, Thermus aquaticus, that flourishes in hot springs, it can withstand the temperature changes necessary for copying.

Four genetic letters – A, T, C and G – make up the DNA code, and all of these nucleotides are included in the reaction mixture when Taq is put to work. But because a nucleotide-like compound called a dideoxynucleotide triphosphate – ddC, ddG, ddA or ddT – also is included, Taq stops copying when it incorporates that compound, like a train that halts on the track when it hits a rock. Therefore, the length of a new DNA chain indicates where that particular nucleotide occurred. After the copies are separated by size and reacted with fluorescent chemicals, DNA sequencing machines can determine which nucleotide terminates each chain. Because A is complementary to T and C to G, this reveals the order of the nucleotides in the original piece of DNA.

Waksman and colleagues obtained X-ray images of Taq at work after crystallizing it with DNA and each of the four dideoxynucleotide triphosphates in turn. They published the first image – Taq DNA polymerase combined with ddC – in The EMBO Journal last year. In the current study, they compared all four images and uncovered the anomaly that hampers Taq’s performance in the lab. Then they used this structural information to fine-tune the enzyme.

Taq is shaped like a hand with fingers, a thumb and a palm. Dideoxynucleotides interact with the fingers. By comparing the images of the four enzyme–DNA-dideoxynucleotide complexes, the researchers discovered that Taq behaves differently when it interacts with ddG than when it interacts with ddA, ddC, or ddT. When it interacts with ddG, one amino acid building block in its fingers – residue 660 – binds to the dideoxynucleotide. But the same amino acid – arginine – doesn’t participate when the enzyme interacts with any of the other three dideoxynucleotides.

One of the enzyme’s shortcomings in the lab is that it incorporates ddG 10 times faster than it incorporates ddA, ddC or ddT. "So we thought that Taq might behave this way because of the additional interaction it makes with this particular dideoxynucleotide," Waksman says. Sure enough, when the researchers changed residue 660 from arginine to various other amino acids, the enzyme incorporated ddG at the lower rate. So altering the enzyme allowed sequencing to proceed at an even pace.

Unexpectedly, changing this amino acid also solved the problem of gaps in the sequence – the blank spots on the copied page. When the enzyme has the usual arginine at position 660, the resulting sequence often has missing letters. But the enzyme without arginine at 660 made copies in which every dideoxynucleotide was detectable, so the sequence had no gaps. The modified enzyme has aspartate, leucine, serine, tyrosine or phenylalanine at this critical position.

"So it is clearly beneficial to have this mutation," Waksman says. "We expect that Taq DNA polymerases mutated at position 660 will help limit sequencing errors and reduce the necessity to sequence the same pieces of DNA multiple times, thereby decreasing labor and costs."

A grant from the National Institutes of Health supported this research.

Li Y, Mitaxov V, Waksman G. Structure-based design of novel Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proceedings of the National Academy of Sciences, 96(17), 9491-9496, Aug. 17, 1999.

Copies of the paper are available from the PNAS news office, 202-334-2138, or by e-mail at: pnasnews@nas.edu

###

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC Health System.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Images Of Enzyme Suggest Way To Improve DNA Sequencing." ScienceDaily. ScienceDaily, 19 August 1999. <www.sciencedaily.com/releases/1999/08/990819064940.htm>.
Washington University School Of Medicine. (1999, August 19). Images Of Enzyme Suggest Way To Improve DNA Sequencing. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1999/08/990819064940.htm
Washington University School Of Medicine. "Images Of Enzyme Suggest Way To Improve DNA Sequencing." ScienceDaily. www.sciencedaily.com/releases/1999/08/990819064940.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins