Featured Research

from universities, journals, and other organizations

Element 107 May Soon Find Place On Chemists' Periodic Table

Date:
October 5, 1999
Source:
Lawrence Berkeley National Laboratory
Summary:
An international collaboration of radiochemists has used the PHILIPS cyclotron at the Paul Scherrer Institute (PSI) in Bern, Switzerland, to determine the volatility of bohrium, element 107 -- the heaviest element yet whose chemistry has been successfully investigated.

BERKELEY, CA — An international collaboration of radiochemists has used the PHILIPS cyclotron at the Paul Scherrer Institute (PSI) in Bern, Switzerland, to determine the volatility of bohrium, element 107 -- the heaviest element yet whose chemistry has been successfully investigated.

Crucial to the research was the use of an isotope of bohrium with a relatively long half-life of about 15 seconds, detected earlier this year by researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley. The team worked at Berkeley Lab's 88-Inch Cyclotron with visitors from the PSI and the University of Bern.

Although several elements heavier than bohrium have been identified, including the discovery within the past year of elements 118 and 116 at the 88-Inch Cyclotron and element 114 at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia, the correct placement of the heaviest elements in the periodic table is under study.

"In the discovery experiments of new elements, only the existence of a new, very heavy atomic nucleus is demonstrated," says Heinz Gäggeler, leader of the PSI team, "but no information about its chemical properties is obtained." To date, the heaviest element whose chemical properties have been widely investigated by experiment is seaborgium, element 106. "Thus, in the view of a chemist," Gäggeler says, "the periodic table currently ends at seaborgium."

"Elements beyond 100 are made an atom at a time, with very low production rates, and have very short half lives," says Darleane C. Hoffman, a longtime collaborator with Gäggeler's team and coleader of the group which identified the relatively long-lived isotope, bohrium 267, at the 88-Inch Cyclotron. A member of the Nuclear Science Division at Berkeley Lab, she is a professor of chemistry at UC Berkeley. Hoffman says, "The chemistry of the heavy elements requires separations that come to equilibrium very rapidly, and these must be valid on an atom-by-atom basis."

Such atoms are created in the laboratory by bombarding heavy target nuclei with an accelerated beam of projectile ions. The nuclei of interest, which are created by the evaporation of a few neutrons, are only a very small fraction of the huge number of reaction products produced. At PSI, the PHILIPS cyclotron yielded about three atoms of bohrium during a day of beam time, but only four bohrium nuclei were detected in the first two weeks of the volatility experiment.

The PSI researchers used a beam of neon 22 to bombard a target of berkelium 249, which has a half-life of 320 days. The targets were prepared at Berkeley Lab from material furnished by the Department of Energy through its Transplutonium Element Production Program at Oak Ridge National Laboratory.

Immediately after bombardment, the reaction products were swept into an automated isothermal system called the On-Line Automated Gas Analyzer (OLGA) developed by Gäggeler and his colleagues. There, reaction products formed molecules in oxygen-containing hydrogen chloride gas. These oxychlorides were then passed through a chromatography column, in which the more volatile species pass through at lower temperatures. In this system, bohrium 267 compound was shown to be volatile at 180 degrees Celsius.

The four bohrium atoms were found only after they had passed through the chromatography column, when the oxychloride molecules containing them were deposited on a rotating detector that carried each small sample under a set of radiation detectors. Bohrium 267 was unambiguously identified by the pattern of its alpha decay, first to dubnium 263, then to lawrencium 259, and subsequently to mendelevium 255.

Because the positive charge of a heavy nucleus is so great, the electronic structure of the atom is distorted. These so-called "relativistic effects" can produce unexpected deviations from chemical properties extrapolated from the element's lighter homologues in the periodic table.

Bohrium may also prove to deviate in this way. The oxychloride of bohrium was shown to be volatile at 180 C, similar to its lighter homologues in group VII of the periodic table, such as rhenium and technetium. Continuing experiments will determine whether bohrium is also volatile at lower temperatures. Technetium, for example, is volatile at 50 C and rhenium at 75 C under the same conditions.

The need to develop techniques for understanding the chemistry of the heaviest elements is partly driven by the search for the "island of stability," a group of superheavy elements whose nuclear shell structure is predicted to make them stable for hundreds or thousands of years or longer, instead of for mere seconds or milliseconds. Isotopes with the number of neutrons required to reach the island of stability have not yet been created.

Meanwhile, however, there is a region of relative stability due to "deformed shells" at lower neutron and proton numbers, which includes bohrium 267. Thus chemical studies of bohrium are not only intrinsically interesting, but aid in what Darleane Hoffman calls "the long march up the periodic table toward the island of stability."

Besides Hoffman, the collaborating team at Berkeley included Berkeley Lab senior scientists Kenneth Gregorich and Heino Nitsche, who is also a professor of chemistry at UC Berkeley, postdoctoral fellows Uwe Kirbach and Carola Laue, and graduate students Joshua Patin, Dan Strellis, and Philip Wilk.

In addition to PSI, Berkeley Lab, and UC Berkeley, collaborating institutions included the University of Bern in Switzerland, the Flerov Laboratory in Russia, the Forschungzentrum Rossendorf, Gesellschaft für Schwerionenforschung (GSI), and Technical University of Dresden in Germany, and the Japan Atomic Energy Research Institute in Japan.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "Element 107 May Soon Find Place On Chemists' Periodic Table." ScienceDaily. ScienceDaily, 5 October 1999. <www.sciencedaily.com/releases/1999/10/991005071519.htm>.
Lawrence Berkeley National Laboratory. (1999, October 5). Element 107 May Soon Find Place On Chemists' Periodic Table. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/1999/10/991005071519.htm
Lawrence Berkeley National Laboratory. "Element 107 May Soon Find Place On Chemists' Periodic Table." ScienceDaily. www.sciencedaily.com/releases/1999/10/991005071519.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) — Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins