Featured Research

from universities, journals, and other organizations

Study Indicates Unexpected Earthquake Dangers Lie Beneath The Pacific Northwest

Date:
October 29, 1999
Source:
Arizona State University, College Of Liberal Arts & Sciences
Summary:
A new study by Arizona State University geologist Simon M. Peacock and Kelin Wang, a geoscientist at the Geological Survey of Canada's Pacific Geoscience Centre, provides firm support for a recent theory that explains how intraslab earthquakes work and confirms the hazard posed to certain geographic areas.

When it comes to damaging earthquakes in the Pacific Northwest, everyone worries about "The Big One," a great thrust earthquake caused by the rupture of a huge offshore fault beneath the ocean, but there are other kinds of earthquake that may be just as dangerous.

In fact, the most damaging earthquake in the U.S. Pacific Northwest in this century was a different type of shock called an "intraslab" earthquake. That magnitude 7.1 event occurred in 1949 beneath Olympia, Washington and caused over $100 million in damage.

A new study by Arizona State University geologist Simon M. Peacock and Kelin Wang, a geoscientist at the Geological Survey of Canada's Pacific Geoscience Centre, provides firm support for a recent theory that explains how intraslab earthquakes work and confirms the hazard posed to certain geographic areas. The study appears in the October 29 issue of Science.

Both great thrust earthquakes and intraslab earthquakes occur in "subduction zones," where oceanic crust dives beneath the edge of a continent. Great thrust earthquakes occur at shallow depths of 0 to 50 kilometers along the sloping boundary between the descending plate and the continental margin. In contrast, intraslab earthquakes occur within the descending oceanic crust at depths of 50 to 300 kilometers beneath the surface and are caused by different processes.

"The risks posed by intraslab earthquakes have not been fully incorporated into seismic hazard analysis," said Peacock. "In many cases, such as the Pacific Northwest, these less easily understood earthquakes occur closer to major population centers than the larger offshore earthquakes. The historic record bears this out."

In 1996, Stephen H. Kirby and colleagues at the U.S. Geological Survey proposed a mechanism for intraslab earthquakes which is supported by the current study. Basically, Kirby's theory proposes intraslab earthquakes occur because the intense heat and pressure in subduction zones metamorphose (or change) the descending oceanic crust into denser rocks. These mineralogical changes cause the subducting oceanic crust to liberate water stored in the original minerals and to reactivate pre-existing faults.

"In the absence of water, these faults would not move because of the weight of the overlying rocks," said Peacock. "The liberated water essentially lubricates the fault - pumping up the water pressure causes the fault to slip."

Peacock and Wang tested Kirby’s theory by comparing two subduction zones in Japan, carefully calculating the temperature of the subducting oceanic crust, and comparing their seismic and volcanic records. Confirming Kirby's theory, the results showed that the oceanic crust subducting beneath southwest Japan - a "warm" subduction zone – should liberate water at shallower depths and thus trigger only shallow intraslab earthquakes and less volcanic activity as compared to activity in the cold subduction zone beneath northeast Japan.

"Things happen much deeper beneath northeast Japan because the subducting crust is much colder and water is released at much greater depth" said Peacock. "It's the water being released at depth that generates these intraslab earthquakes and subduction-zone volcanoes. Intraslab earthquakes occur at relatively shallow depths beneath southwest Japan because the subducting oceanic crust is warmer."

Like southwest Japan, the Pacific Northwest (northern California, Oregon, Washington, and southern British Columbia) and southern Mexico are underlain by warm subduction zones.

"The Vancouver-Seattle-Tacoma area may be more at risk from an intraslab earthquake than from a larger earthquake along the offshore trench," Peacock said. "This risk has only recently been recognized. We're starting to realize that we have to worry about a magnitude 7-7.5 intraslab earthquake located 50 km beneath Seattle or Vancouver, as well as a magnitude 8 or 9 out on the coast."

"Large intraslab earthquakes occur quite frequently. Just last month, on September 30, a magnitude 7.4 intraslab earthquake shook Oaxaca, Mexico killing at least 27 people."

Peacock, whose main field of expertise is metamorphic petrology, points out that this study is an example of how specialized scientific research can sometimes yield information with real significance to everyday life. "For years I have studied metamorphism, a largely academic subject. Now we've learned that there is a solid connection between metamorphic processes and earthquakes that have killed tens of thousands of people," he said.


Story Source:

The above story is based on materials provided by Arizona State University, College Of Liberal Arts & Sciences. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University, College Of Liberal Arts & Sciences. "Study Indicates Unexpected Earthquake Dangers Lie Beneath The Pacific Northwest." ScienceDaily. ScienceDaily, 29 October 1999. <www.sciencedaily.com/releases/1999/10/991029071538.htm>.
Arizona State University, College Of Liberal Arts & Sciences. (1999, October 29). Study Indicates Unexpected Earthquake Dangers Lie Beneath The Pacific Northwest. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/1999/10/991029071538.htm
Arizona State University, College Of Liberal Arts & Sciences. "Study Indicates Unexpected Earthquake Dangers Lie Beneath The Pacific Northwest." ScienceDaily. www.sciencedaily.com/releases/1999/10/991029071538.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins