Featured Research

from universities, journals, and other organizations

Scientists Map Brain's Primary Memory Network

Date:
December 13, 1999
Source:
Wake Forest University Baptist Medical Center
Summary:
For the first time, a team of Wake Forest University investigators has mapped the functional organization of the hippocampus, the brain's primary memory network, a step that other scientists are calling "a major breakthrough."

WINSTON-SALEM, N.C. - For the first time, a team of Wake Forest University investigators has mapped the functional organization of the hippocampus, the brain's primary memory network, a step that other scientists are calling "a major breakthrough." The researchers - Sam A, Deadwyler, Ph.D., Robert E. Hampson, Ph.D. and John D. Simeral - report in today's (Dec. 9) Nature that they have mapped the way that a part of the brain, the dorsal hippocampus, encodes information when rats perform a short-term memory task.

Related Articles


The researchers, members of the Department of Physiology and Pharmacology, mapped the actions with an array of 10-16 microelectrodes. The electrodes are small enough to record the electrical impulses of individual brain neurons during the animals' performance. Recordings from the electrodes demonstrate that different portions or segments of the hippocampus are active at different times during the task depending on the type of memory function required.

In the "News and Views" section of the same issue of Nature, Howard Eichenbaum, Ph.D., of the Laboratory of Cognitive Neurobiology at Boston University termed the breakthrough in understanding memory processes highly significant, adding that the study revealed "a functional organization for the hippocampus, one of the highest cortical processing areas in the brain."

The rats are tested in an experimental chamber with two bars or levers positioned on a single wall as left or right. At the start, only one lever is presented. It is pressed by the animal, then retracted, followed by a delay period in which the rat must engage in other unrelated activity. The delay period can be as short as one second or as long as forty seconds -- the rat never knows. At the end of the delay, both levers appear, and the animal is supposed to press he lever it did not press at the outset of the trial. If it does, it is rewarded. If the wrong lever is pressed the chamber goes dark for five seconds and a new trial begins.

"The uniqueness of this situation is that the animal's task is to remember one piece of information in one phase of the task, that is, which lever it pressed before the delay, and then retain and use that information to make a decision about which lever to press when both levers are available after the delay is over," said Deadwyler, professor and vice chair of the department.

The task is easy if the delay is short -- the animal will get the answer correct most of the time. However, as the delay becomes longer it is more likely that animals will not remember which lever it pressed at the start and chose the wrong lever at the end of the delay. Deadwyler noted that is similar to the rapid decrease in retention of a new telephone number after it is dialed.

Animals played the game between 100 and 150 times each day and generated very stable performance profiles.

While the animals were performing, the researchers were recording which neurons in the hippocampus were active and found different patterns, depending on which lever the animal was supposed to choose at end of the trial. "There's a distinct separation up and down the hippocampus with respect to which groups of cells fire during the different phases of the memory task," Deadwyler said.

"The findings extend this knowledge of hippocampal encoding to an anatomic framework of overlapping 'memory networks' in which location within hippocampus determines which cells are activated under which short-term memory demands," the team reported.

In his commentary, Eichenbaum points out that the anatomic framework described by Deadwyler and colleagues follows known functional anatomy present in other brain areas that are not specialized to encode memories, indicating that "the coding properties of hippocampal neurons 'respect' the anatomical circuitry in which they reside."

Deadwyler said the work parallels ongoing studies in people in which scientists are trying to determine how subjects encode different types of information and how retrieval of that information occurs in different brain regions. "There might be a similar anatomic encoding scheme in the human hippocampus for categorizing and partitioning information used in short term memory as we have seen in the rat."

Hampson is associate professor and Simeral is a third-year graduate student


Story Source:

The above story is based on materials provided by Wake Forest University Baptist Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest University Baptist Medical Center. "Scientists Map Brain's Primary Memory Network." ScienceDaily. ScienceDaily, 13 December 1999. <www.sciencedaily.com/releases/1999/12/991213052125.htm>.
Wake Forest University Baptist Medical Center. (1999, December 13). Scientists Map Brain's Primary Memory Network. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/1999/12/991213052125.htm
Wake Forest University Baptist Medical Center. "Scientists Map Brain's Primary Memory Network." ScienceDaily. www.sciencedaily.com/releases/1999/12/991213052125.htm (accessed October 31, 2014).

Share This



More Mind & Brain News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com
Five-Year-Olds Learn Coding as Britain Eyes Digital Future

Five-Year-Olds Learn Coding as Britain Eyes Digital Future

AFP (Oct. 27, 2014) Coding has become compulsory for children as young as five in schools across the UK. Making it the first major world economy to overhaul its IT teaching and put programming at its core. Duration: 02:19 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins