Featured Research

from universities, journals, and other organizations

Antibacterial Implants Could Prevent Infections, Save Patients' Lives

Date:
December 15, 1999
Source:
University Of Washington
Summary:
University of Washington researchers have developed a method of crafting medical implants from an antibacterial polymer that could prevent thousands of patients from dying of hospital-acquired infections each year.

University of Washington researchers have developed a method of crafting medical implants from an antibacterial polymer that could prevent thousands of patients from dying of hospital-acquired infections each year.

Related Articles


The polymer slowly releases an antibiotic to keep bacteria from establishing a foothold. It could be used to prevent infections around such commonly used devices as catheters as well as more permanent implants, such as pacemakers, according to Buddy Ratner, UW professor of bioengineering and director of the University of Washington Engineered Biomaterials (UWEB) program.

A two-article series on the technique appears in this month's issue of the Journal of Controlled Release.

Infections linked to devices that are inserted into patients are a serious hospital problem, according to Ratner.

"People don't realize that even commonly used devices like catheters account for about 50,000 hospital deaths in the United States each year, many of them because of infection," Ratner said.

Catheters, which are used on patients who require a long regimen of intravenous drugs, are initially sterile, but they can become gathering spots for dangerous microorganisms.

"Once the bacteria get on the device, they are extremely difficult to remove and very resistant to treatment," Ratner said. "It can take 100 times the concentration of an antibiotic to kill the bacteria when they are attached as it takes to kill them when they're free."

The reason may be a protective biofilm that bacteria produce after they become established. When that happens, often the only way to treat the infection is to remove the device from the patient.

The key to stopping infections, then, lies in killing bacteria that come near the device before they form an attachment, Ratner said.

"We found a way to put the antibiotic just on the surface of the device where it interfaces with the body's fluids," he said. "What we've developed is a slowly released micro-aura of the antibiotic. It only takes a small amount because it's right where you need it."

To accomplish that, the researchers first combined the antibiotic ciprofloxacin with a polymer called polyethylene glycol - an approved food additive - and mixed that with the polyurethane used to make medical implants. That made an even, homogeneous material that released the drug in a uniform manner, Ratner said, "but the release was too quick."

To manage the rate of release, researchers used a plasma process to coat the material with an ultrathin layer of another polymer, butyl methacrylate.

When a device is implanted in the body, fluids pass through that thin, permeable outer coating and dissolve the polyethylene glycol, which makes the polyurethane porous. The antibiotic then leaches out of the polyurethane. The coating acts as a barrier to the antibiotic, controlling the rate at which it is released to the surface of the device.

"The outer coating is just 10 or 20 atoms thick," Ratner said. "It makes for a very controlled, slow release."

Tests showed that the system maintains a protective drug cloak for at least five days.

The technology has another advantage for hospital patients - it prevents the development of drug-resistant bugs when some of the bacteria are exposed to an antibiotic and survive.

"With our method, the concentration of the drug is high enough that it kills all of the bacteria that get into the zone around the device," Ratner said.

The first article of the series in the Journal of Controlled Release is co-authored by Ratner, Bioengineering Professor Thomas Horbett and UW bioengineering graduate student Connie S. Kwock in collaboration with researchers in Montana and Connecticut. The second is the work of Ratner, Kwock and Horbett


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Antibacterial Implants Could Prevent Infections, Save Patients' Lives." ScienceDaily. ScienceDaily, 15 December 1999. <www.sciencedaily.com/releases/1999/12/991215072051.htm>.
University Of Washington. (1999, December 15). Antibacterial Implants Could Prevent Infections, Save Patients' Lives. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/1999/12/991215072051.htm
University Of Washington. "Antibacterial Implants Could Prevent Infections, Save Patients' Lives." ScienceDaily. www.sciencedaily.com/releases/1999/12/991215072051.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins