Featured Research

from universities, journals, and other organizations

Scientists Develop Most Efficient Mouse Cloning Strategy To Date, Create Transgenic Clone

Date:
February 1, 2000
Source:
Whitehead Institute For Biomedical Research
Summary:
Tetley is no ordinary mouse. And it's not just because he's a clone. Tetley is special because he was created using a new technology that researchers say has produced the most efficient results to date for cloning mice. He is also the first mouse clone whose genetic material was modified in the laboratory before cloning. The technology used to create Tetley, say researchers, will have a major impact on improving the efficiency of cloning in general.

Tetley is no ordinary mouse. And it's not just because he's a clone. Tetley is special because he was created using a new technology that researchers say has produced the most efficient results to date for cloning mice. He is also the first mouse clone whose genetic material was modified in the laboratory before cloning. The technology used to create Tetley, say researchers, will have a major impact on improving the efficiency of cloning in general.

In the February issue of Nature Genetics, researchers, led by Dr. Rudolf Jaenisch at the Whitehead Institute for Biomedical Research, report that they have successfully used embryonic stem cells to clone mice with the highest efficiency to date. Their study comparing clones generated by two different donor strains suggests that the genetic make up of donor cells plays a key role in determining the viability of clones.

In addition, the scientists show for the first time that it is possible to modify the genetic material in embryonic cells before using these cells to clone new animals. The scientists inserted a gene derived from the tetracycline (tet) receptor into an embryonic stem cell and then transplanted the modified genome into an egg cell whose genetic material had been removed. The result was Tetley: a transgenic clone who now carries the tet gene. The new technology will improve cloning efficiency by providing researchers the genetic tools needed to understand why so few clones survive to term and grow into healthy adults.

"Our technology will help scientists tackle one of the major challenges of mammalian cloning‹the low numbers of viable clones," says Dr. Jaenisch. "Most clones die during gestation or soon after birth, and there are many possible reasons for this, including genetic make up of the donor, the cell-cycle stage of the donor cell, loss of genetic information, or the inability of the egg cell to reprogram the donor cell nucleus."

Assessing the impact of these factors on cloning efficiency has been difficult because most cloning experiments have used somatic cells‹adult cells that have specialized to perform specific functions in the body. Somatic cells have a limited lifespan, and they are difficult to manipulate genetically. As a result, they make poor tools for studying the genetic basis of cloning efficiency.

The technology of cloning using embryonic stem cells removes that obstacle, allowing researchers to study the various parameters that affect cloning efficiency, says Dr. Jaenisch. Embryonic stem cells normally direct the development of an entire animal. They can grow indefinitely in culture and can also be genetically manipulated to carry extra genes or knock-out genes under study. Thus they provide researchers the perfect genetic tool to study cloning.

Although the Federal government and most scientists believe human cloning to be unethical, experts agree that improving cloning technology could have real benefits in agriculture and animal husbandry, as well as in biomedical research designed to decipher the mechanisms of disease. The mouse, in particular, is considered the best mammalian model system to study the genetic basis of human disease.

In the Nature Genetics study, the Jaenisch lab and their collaborators at University of Hawaii produced mouse embryos by transplanting genetic material from embryonic stem cells of two different strains of donor mice into enucleated egg cells. They then implanted these embryos into surrogate mice. After the transfer, 7 of the 34 embryos‹21percent‹from the first strain developed to term and grew into healthy adults. By contrast, only 8 of 76 embryos made from the second, more inbred strain developed to term. All 8 died within 24 hours after birth, demonstrating that genetic make up of donor cells may be a key to survival of clones.

"Embryonic stem cells from outbred mice created clones with better efficiency than embryonic stem cells from inbred mice. Thus, the ability to generate viable clones from ES cells might be correlated with their genetic diversity," says Dr. William Rideout, a postdoc in the Jaenisch lab.

Scientists also found that the survival rate of transferred embryos was higher with cloning using embryonic stem cells rather than somatic cells, probably because embryonic stem cells need less reprogramming of gene expression (i.e. turning back of the developmental clock) than somatic cells.

This and other information from ES cell cloning will help researchers maximize cloning efficiency.

Finally, this study points to a new way of making transgenic animals that could be faster and more efficient, say scientists. "Transgenic science is an important research tool because it allows us to insert mutations in a gene and study how it affects the whole animal. If we know which gene is mutated in a particular human disease, we can develop mouse models with the same mutation," says Dr. Rideout.

Today, mouse models of diseases such as epilepsy, colon cancer, hypertension, and diabetes are providing new insights into the genetic basis of these diseases, but transgenic animals are cumbersome to make and it takes three to nine months for scientists to create a new strain. Scientists say that using targeted ES cells to clone animals will cut down by one-third the time it takes to create mouse models.

###

The study was funded in part by the National Institutes of Health.

The title of the Nature Genetics report is "Generation of mice from wild-type and targeted ES cells by nuclear cloning." The authors are:

William M. Rideout III, Whitehead Institute for Biomedical Research
Teruhiki Wakayama, University of Hawaii
Anton Wutz, Whitehead Institute for Biomedical Research
Kevin Eggan, Whitehead Institute for Biomedical Research
Laurie Jackson-Grusby, Whitehead Institute for Biomedical Research
Jessica Dausman, Whitehead Institute for Biomedical Research
Ryuzo Yanagimachi, University of Hawaii
Rudolf Jaenisch, Whitehead Institute for Biomedical Research


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "Scientists Develop Most Efficient Mouse Cloning Strategy To Date, Create Transgenic Clone." ScienceDaily. ScienceDaily, 1 February 2000. <www.sciencedaily.com/releases/2000/02/000201074406.htm>.
Whitehead Institute For Biomedical Research. (2000, February 1). Scientists Develop Most Efficient Mouse Cloning Strategy To Date, Create Transgenic Clone. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2000/02/000201074406.htm
Whitehead Institute For Biomedical Research. "Scientists Develop Most Efficient Mouse Cloning Strategy To Date, Create Transgenic Clone." ScienceDaily. www.sciencedaily.com/releases/2000/02/000201074406.htm (accessed August 2, 2014).

Share This




More Plants & Animals News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins