Featured Research

from universities, journals, and other organizations

University At Buffalo Researchers Develop Novel Way To Study Dynamics Of Receptor Proteins

Date:
February 22, 2000
Source:
University At Buffalo
Summary:
Structural biologists are learning what protein molecules look like in their stable-state end-points, but very little is known about the instantaneous journey from one state to the other. Researchers at the University at Buffalo, in the Feb. 17 issue of Nature, report a new way to study the dynamics of proteins as they pass through this transition state.

BUFFALO, N.Y. -- Proteins, the workhorses of human cells, exist primarily in two stable states: inactive and active. In order to perform their assigned tasks, they must be triggered to change into the active state.

Related Articles


Structural biologists are learning what protein molecules look like in their stable-state end-points, but very little is known about the instantaneous journey from one state to the other.

Researchers at the University at Buffalo, in the Feb. 17 issue of Nature, report a new way to study the dynamics of proteins as they pass through this transition state.

"To understand how a protein works, it is very important to understand how it moves and changes," said Anthony Auerbach, Ph.D., UB professor of physiology and biophysics, and senior author on the paper. Claudio Grosman, Ph.D., research assistant professor working with Auerbach, is the primary author.

"When we know how the protein moves, perhaps we can make it go faster or slower, or develop drugs to change the ratio of active-to-inactive states," Auerbach said.

The ability to intervene in the transition state eventually could be useful in such conditions as congenital myasthenia syndrome, in which molecules in muscle cells jump too quickly from one state to the other, causing damage to the cell and eventually interfering with movement, he noted.

Grosman and Auerbach have been working with a single protein molecule at the nerve-muscle synapse -- a receptor for the neurotransmitter acetylcholine. Using a standard technique called patch clamp, they have been able to obtain a "snapshot" of several regions of the receptor at the transition state -- the highest energy point between active and inactive states. Their results suggest there is a wave of structural change during receptor activation.

"The resulting map of this conformation wave provides empirical evidence that will serve as guide posts for scientists who will do the computer analysis of the transition state in the future," Auerbach said.

Ming Zhou, Ph.D., a former graduate student in the UB Department of Physiology and Biophysics, now at Rockefeller University, also participated in the research.


Story Source:

The above story is based on materials provided by University At Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University At Buffalo. "University At Buffalo Researchers Develop Novel Way To Study Dynamics Of Receptor Proteins." ScienceDaily. ScienceDaily, 22 February 2000. <www.sciencedaily.com/releases/2000/02/000222065206.htm>.
University At Buffalo. (2000, February 22). University At Buffalo Researchers Develop Novel Way To Study Dynamics Of Receptor Proteins. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2000/02/000222065206.htm
University At Buffalo. "University At Buffalo Researchers Develop Novel Way To Study Dynamics Of Receptor Proteins." ScienceDaily. www.sciencedaily.com/releases/2000/02/000222065206.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins