Featured Research

from universities, journals, and other organizations

Drosophila Sequencing Stands As Genetic Research Milestone

Date:
March 24, 2000
Source:
Lawrence Berkeley National Laboratory
Summary:
In 90 years of study, the diminutive fruit fly Drosophila melanogaster has yielded many of the most fundamental discoveries in genetics -- beginning with proof, in 1916, that the genes are located on the chromosomes. Only during the last year has the fly's whole genome been sequenced, however, and its 13,601 individual genes enumerated.

BERKELEY, CA — In 90 years of study, the diminutive fruit fly Drosophila melanogaster has yielded many of the most fundamental discoveries in genetics -- beginning with proof, in 1916, that the genes are located on the chromosomes. Only during the last year has the fly's whole genome been sequenced, however, and its 13,601 individual genes enumerated.

The genome of D. melanogaster, the largest yet sequenced in full, is described in the 24 March 2000 issue of Science magazine, in a series of articles jointly authored by hundreds of scientists, technicians, and students from 20 public and private institutions in five countries.

The collaboration was led by Gerald Rubin of the University of California at Berkeley and the Howard Hughes Medical Institute (HHMI), who heads the Berkeley Drosophila Genome Project, and by J. Craig Venter of Celera Genomics in Rockville, Maryland. The Berkeley Drosophila Genome Project (BDGP) is supported by the Department of Energy, the National Human Genome Research Institute, and HHMI, with the largest of its facilities operated by the Life Sciences Division of the Department of Energy's Lawrence Berkeley National Laboratory.

In 1998, when collaboration with Celera began, extensive but incomplete maps of the location of specific DNA sequences on the fly chromosomes had been constructed, and about 20 percent of the fly genome had already been sequenced in detail -- mostly by the BDGP group at Berkeley Lab where, with Rubin, Susan Celniker is co-director of the sequencing effort.

The purpose of the collaboration was to test whether a strategy known as whole-genome shotgun sequencing could be used on organisms having many thousands of genes encoded in millions of DNA base pairs; the strategy had proven effective for small bacterial genomes.

"No one knew whether whole-genome shotgun sequencing would work for the fly genome," says Roger Hoskins, leader of the BDGP physical mapping project, "but we knew that if it did, it would be faster and more efficient than traditional methods."

D. melanogaster has some 250 million bases in its genome, arranged on five chromosomes; 80 percent of the genome is located on the large chromosomes labeled 2 and 3. Hoskins and his colleagues set out to produce a physical map of that part of chromosomes 2 and 3 that expresses genes (about 45 percent of the chromosomal material is highly condensed and does not encode genes).

Although physical maps are not sequences -- a sequence identifies every pair of bases along a given stretch of DNA -- a good map pins down the location of unique short sequences that can be used to establish the correct long-range order of copies of longer DNA sequences, and thus of any genes they represent.

The 17,000 clones used by the Berkeley Lab BDGP group are actual stretches of DNA replicated in Escherichia coli bacteria and known as "bacterial artificial chromosomes" (BACs). Each BAC accurately represents a discrete stretch of the genome, and the map marks each BAC with at least one unique "sequence-tagged site" (STS) -- ideally with two or more such sites.

Using probes tailored to each sequence-tagged site, an STS can be found wherever it occurs in a random collection of clones; 1,923 of these markers, spaced roughly every 50,000 bases, were used to build the BDGP's final map. By matching these sites among overlapping clones, sets of clones of different lengths can be lined up with one another and eventually "tiled" along the entire length of each chromosome. The result is called an STS content map.

When their map of chromosomes 2 and 3 was complete -- along with maps of the much shorter chromosomes 4 and X produced by others -- the BDGP researchers made a "rough draft" sequence of the genome with shallow coverage (less than two clones deep), which served as a check against Celera's whole-genome shotgun sequence and is being used to close some of its 1,600 gaps.

The multi-author Science paper summarizing the genome-sequence results describes the importance of the BDGP's methods and results: "The BAC end-sequences and STS content map provided the most informative long-range sequence-based information at the lowest cost." Increasing the number of BAC end-sequences is the authors' primary recommendation for future genome-sequencing projects.

D. melanogaster's importance is far greater than as a trial run for the mouse and human genome, however. In a set of 289 human genes implicated in diseases, 177 are closely similar to fruit fly genes, including genes that play roles in cancers, in kidney, blood, and neurological diseases, and in metabolic and immune-system disorders. "The underlying biochemistry of fruit flies and humans is remarkably similar," says Hoskins, "so fruit flies can provide clues to understanding human diseases caused by defective genes."

"We can find human tumor-suppressing genes in flies easier than we can in the mouse," says Susan Celniker, pointing out that experiments can be done using fly genes that would be impractical (or unthinkable) using human subjects. Especially useful is the identification of networks of other genes that interact with known disease genes, and their associated metabolic pathways. The implications for medicine are immediate.

To this end the BDGP researchers are continuing to refine the D. melanogaster sequence already produced. "We're going to push it to high accuracy," says Hoskins.

The Human Genome Project aims for a resolution of one error in 10,000 base pairs -- roughly the number of errors that could arise from normal human variation -- but the Drosophila workers intend to achieve an accuracy of one error in 100,000, a goal partly made possible by the limited variation among inbred laboratory flies.

Meanwhile the completed genome of D. melanogaster reported in the 24 March 2000 issue of Science stands as a milestone in the history of genetic research and a doorway to new methods of progress. For one thing, Celera is now attempting to apply the whole-genome shotgunning technique to the much larger human genome.

"Celera did a great job," says Hoskins, "and the project worked better than anyone could have hoped. Now, the BDGP and the rest of the community of 5,000 Drosophila researchers around the world can begin projects to understand how the genome sequence controls the biology."

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "Drosophila Sequencing Stands As Genetic Research Milestone." ScienceDaily. ScienceDaily, 24 March 2000. <www.sciencedaily.com/releases/2000/03/000324095129.htm>.
Lawrence Berkeley National Laboratory. (2000, March 24). Drosophila Sequencing Stands As Genetic Research Milestone. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2000/03/000324095129.htm
Lawrence Berkeley National Laboratory. "Drosophila Sequencing Stands As Genetic Research Milestone." ScienceDaily. www.sciencedaily.com/releases/2000/03/000324095129.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins