Featured Research

from universities, journals, and other organizations

MIT Physicists Hail Results Of Ion-Collision Experiment

Date:
July 18, 2000
Source:
Massachusetts Institute Of Technology
Summary:
A head-on collision between gold nuclei travelling at nearly the speed of light produced a blue spray of subatomic particles on a computer screen at Brookhaven National Laboratory and a bright ray of hope for physicists at MIT and other institutions studying the state of matter immediately after the Big Bang.

A head-on collision between gold nuclei travelling at nearly the speed of light produced a blue spray of subatomic particles on a computer screen at Brookhaven National Laboratory and a bright ray of hope for physicists at MIT and other institutions studying the state of matter immediately after the Big Bang.

The crash of the nuclei was created by Brookhaven's atom-smasher, called the Relativistic Heavy Ion Collider (RHIC), on June 12. The huge collider aims to recreate the conditions of the early universe a tiny fraction of a second after the Big Bang. Matter at that moment was so hot and dense that atomic nuclei did not exist; only their component quarks and force-carrying gluons were present, forming a soup-like quark-gluon plasma. In the Brookhaven collider, collisions between nuclei travelling at almost the speed of light will fleetingly attain energy densities not seen since that time.

After the Big Bang, the quark-gluon plasma quickly cooled, resulting in the discrete particles that make up ordinary matter. In the present universe, quarks are never found by themselves; they occur only as hadrons -- bulky packages of two or three quarks held together by gluons. The RHIC subatomic collisions aim to blow those packs back to their original hot, dense and soupy state.

Through the RHIC experiments, scientists hope to be able to gather definitive evidence that quark-gluon plasma was formed and to understand its properties.

"We are excited, relieved and slightly tired," said Wit Busza, the Francis Friedman Professor of Physics and a MacVicar Faculty Fellow. "It is very important that we identify that moment and that we show that we have compressed normal matter so much that it produced the plasma."

RHIC produces its collisions and, physicists believe, plasma by stripping gold atoms of their electrons, boosting their energy, and using electric and magnetic fields to rev them up to almost the speed of light. Once this is achieved, the nuclei are sorted into two bunches, sent down a 2.4-mile pipe in opposite directions, further accelerated and smashed together at four different points along the RHIC oval track.

Each head-on collision between the gold nuclei spews thousands of exotic particles, and detectors are situated at four of RHIC's collision sites to gather and decipher the enormous volumes of data generated by the crackups. There are two large detectors, STAR and PHENIX, and two small ones, PHOBOS and BRAHMS. The four vary in their approaches to tracking and analyzing particles' behavior.

Professor Busza is the founder and spokesperson for the PHOBOS detector project, initiated in 1992 at MIT. MIT's Heavy Ion Group, which includes Professor Busza, Assistant Professor Gunther Roland, and Associate Professors Leslie Rosenberg and Bolek Wyslouch, is the lead institution in the PHOBOS project. Professor Wyslouch is the project manager.

"With RHIC, we are making an analogy to what happened just after the Big Bang. We are replaying history to study the process of transition similar to a phase transition that occurs when water vapor turns into fog," said Professor Busza. "And it's a relief to know the equipment works to do that. But we still had to show that the events occurred and analyze what happened. Thanks to an international team of scientists and to strong support from the Laboratory for Nuclear Science, the physics department and the School of Science, we succeeded with PHOBOS."

PHOBOS is an $8 million collaboration between the United States, Poland and Taiwan involving 50 physicists and 25 engineers and technicians. As described by Professor Busza, the core of the PHOBOS detector is state-of-the-art-technology "about the size of an MIT office desk."

PHOBOS, named after one of the moons of Mars, is designed to "examine many, many collisions and study in detail the results from a small fraction of them -- in particular those produced by the most violent collisions," said Professor Busza. "The MIT idea was to do it on a small scale."

STAR, a detector about the size of a three-story house, is designed to look at a smaller number of events with greater detail. The June 12 celebration at Brookhaven was set off by the bright blue fireworks display produced by STAR and by evidence of the first 1,000 collisions detected by PHOBOS.

"We've got a lot of fragments; we've got evidence and we agree the nuclei collided. Now we have to infer what happened. This is just the beginning of our research," said Professor Busza.

As for the next steps in the field of quark-gluon dynamics, RHIC's oval-track shape gives a hint. Nuclei will be given more energy, higher-energy densities will be created and our understanding of how the universe began will grow.

"Today RHIC collides nuclei with 30 GeV [billion electron volts] per nucleon. Soon it will be three times that -- 100 GeV per nucleon. Also, we want to record more collisions. We've seen a thousand; we want to look at a billion," said Professor Busza.

Professor Busza acknowledged the support of Robert Birgeneau, former Dean of Science, in arranging significant early funding, in addition to the MIT faculty.

The MIT PHOBOS team also includes principal research scientists George Stephan and Robin Verdier; visiting scientist Judith Katzy; research scientists Piotr Kulinich, Gerrit Van Nieuwenhuizen, Heinz Pernegger and Christof Roland; Bernard Wadsworth, chief electronics engineer; design engineer Miroslav Plesko; John Fitch; and technicians Christiano Gomes, Margery Neal and Dale Ross. Senior research scientist Stephen Steadman, recently a member of the PHOBOS team, has moved to the DOE. Doctoral students on the team were Patrick Decowski, Kristjan Gulbrandsen, Conor Henderson, Jay Kane, Corey Reed, Pradeep Sarin, and Carla Vale. Johannes Muelmenstadt, a junior in physics, also participated.

PHOBOS and RHIC are funded by the US Department of Energy.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "MIT Physicists Hail Results Of Ion-Collision Experiment." ScienceDaily. ScienceDaily, 18 July 2000. <www.sciencedaily.com/releases/2000/07/000717073303.htm>.
Massachusetts Institute Of Technology. (2000, July 18). MIT Physicists Hail Results Of Ion-Collision Experiment. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2000/07/000717073303.htm
Massachusetts Institute Of Technology. "MIT Physicists Hail Results Of Ion-Collision Experiment." ScienceDaily. www.sciencedaily.com/releases/2000/07/000717073303.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins