Featured Research

from universities, journals, and other organizations

New Facility Tests Gas Pipeline Earthquake-Simulations

Date:
September 8, 2000
Source:
Cornell University
Summary:
In many recent large earthquakes -- such as in Northridge, Calif., in 1994 and in Kobe, Japan, in 1995 -- some of the most alarming damage was to buried natural gas pipelines, most of them curving along rights-of-way using vulnerable elbow joints. The danger from a ruptured high-pressure gas pipeline can be an explosion or even a fireball.

ITHACA, N.Y. -- In many recent large earthquakes -- such as in Northridge, Calif., in 1994 and in Kobe, Japan, in 1995 -- some of the most alarming damage was to buried natural gas pipelines, most of them curving along rights-of-way using vulnerable elbow joints. The danger from a ruptured high-pressure gas pipeline can be an explosion or even a fireball.

To test the effects of earthquakes on gas pipelines, Cornell University and Tokyo Gas Co. have teamed up in the largest experimental facility of its kind ever constructed to see exactly what happens when the earth moves violently against an underground line.

Over the coming weeks in Cornell's Winter Laboratory, scientists from the two organizations, joined by earthquake expert Professor Masanori Hamada from Waseda University in Japan, will be simulating earthquake loads on four 30-foot-long steel, L-shaped gas pipelines -- made in Japan for use under Tokyo streets -- by pitting them against 60 tons of moving sand.

The results of the experiments will be used to draw up an earthquake-resistance design code for gas pipelines in Japan.

However, says Thomas O'Rourke, professor of civil and environmental engineering at Cornell and the principal researcher on the experiment, "this test and simulation is a very significant step forward for the design of all underground piping. As we move piping into frontier situations, such as gas or oil transmission across the seafloor or mountain passes or earthquake-prone areas, we must gain a greater understanding of the extreme deformation behavior of these critical facilities."

Adds Koji Yoshizaki of Tokyo Gas, who has been a visiting scientist at Cornell for the past two years and who led the design of the experiment, "Because we have never been able to conduct this kind of test in the ground, we have not been able to calibrate our computer model on how buried pipeline behaves when it is subjected to the massive forces of a landslide." Tokyo Gas has contributed more than $100,000 toward the cost of the experiment.

The device is truly earthquake-size. A massive L-shaped, steel-reinforced wood box, 14 feet wide and 30 feet long, has been filled with sand from a three-story hopper. The box is built in two sections, one fixed and the other -- the L-shaped part -- movable. The pipeline, which has one elbow joint, passes through the box structure at a right angle, under 3 feet of sand, and is bolted to the floor at both ends.

Then in just 70 seconds the L-shaped box section is moved 4 feet against the other, using a 10-ton crane hauling an eight-pulley block and tackle.

The force of 60 tons of shearing sand on 4-inch-diameter steel piping -- simulating the movement of the earth in a typical magnitude 7 or greater earthquake -- is not expected actually to rupture the metal but to deform it considerably. In fact, the engineers on the project estimate that maximum pressures of 50 pounds per square inch will be mounted against the pipeline by the moving sand. That makes the stress roughly equal to the uniform pressure beneath a 250-ton stack of automobiles or a 40- to 50-story building.

"The experiment has been designed quite cleverly with respect to the worst conditions that pipelines could experience," says James Mason, a Cornell graduate research assistant -- as well as a licensed civil engineer -- on the project. "Our aim is to benchmark that condition and analyze it to a degree that conforms with real circumstances."

The data are recorded through 120 strain gauges attached to each pipe. In addition, other specialized sensors record such information as the force between the pipe and the soil and the displacement of the pipe relative to the size of the box. This data will be fed to analysts at the University of Cambridge in England, who are working with Tokyo Gas to develop the next generation of soil-structure computer models.

The four tests will simulate different conditions in moving soil -- such as direct shear and lateral spread -- by changing the sand density (through compaction) and moisture content. The ground ruptures being simulated, says O'Rourke, are generic to fault ruptures, liquefaction and landslides. Fault ruptures occur at plate boundaries in the Earth's crust when the sudden release of energy causes an earthquake. Liquefaction occurs when the tremors of an earthquake create a fast-moving viscous mass of particles below the water table that drags the solid ground above, creating enormous forces on buried pipelines.

Large though the lab experiment is, Tokyo Gas's Yoshizaki originally suggested a sand box twice the current size. But, says Tim Bond, manager of the Winter Lab, being able to move 60 tons of sand and place it according to exacting standards is in itself "a major exercise in industrial process control."

The experiment also is supported by the National Science Foundation's program for U.S.-Japan Cooperative Research in Urban Earthquake Disaster Mitigation and the Multi-Disciplinary Center for Earthquake Engineering Research at the State University of New York at Buffalo.

Related World Wide Web site:

Tokyo Gas Co.: http://www.tokyo-gas.com.jp/techno/index_e.html


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "New Facility Tests Gas Pipeline Earthquake-Simulations." ScienceDaily. ScienceDaily, 8 September 2000. <www.sciencedaily.com/releases/2000/09/000904125210.htm>.
Cornell University. (2000, September 8). New Facility Tests Gas Pipeline Earthquake-Simulations. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2000/09/000904125210.htm
Cornell University. "New Facility Tests Gas Pipeline Earthquake-Simulations." ScienceDaily. www.sciencedaily.com/releases/2000/09/000904125210.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins