Featured Research

from universities, journals, and other organizations

DNA-Based Flu Vaccine Raises Protective Immunity

Date:
September 15, 2000
Source:
Emory University Health Sciences Center
Summary:
Scientists at the Vaccine Research Center of Emory University have successfully engineered and tested a single-dose, DNA-based influenza vaccine in mice that could serve as a template for more effective vaccines against a variety of viral illnesses, including HIV.

ATLANTA -- September 5, 2000 -- Scientists at the Vaccine Research Center of Emory University have successfully engineered and tested a single-dose, DNA-based influenza vaccine in mice that could serve as a template for more effective vaccines against a variety of viral illnesses, including HIV. Results of the study appear in the August edition (Vol. 1, No. 2) of Nature Immunology.

Related Articles


The research team fused DNA from an immune system component of complement called C3d to the hemagglutinin (HA) glycoprotein of the influenza virus. For purposes of comparison, two other DNA vaccines were also constructed based on a secreted form of HA (sHA) and a transmembrane (tmHA) version.

Mice were inoculated with the vaccines and then challenged with a lethal dose of influenza virus. All three vaccines generated a neutralizing antibody response. The C3d form of the vaccine, however, produced 10 to 20 times higher levels of neutralizing antibody than the sHA and tmHA vaccines. Protective immunity was also generated at a much faster rate and at a dose ten times lower than with the non-fused forms of HA.

Previous studies have determined that combining two or three copies of C3d to a model antigen increased the efficacy of immunizations by more than 1000-fold compared to protein-based vaccines. The VRC study is the first to demonstrate the effectiveness of the C3d-fusion with a DNA vaccine and in a viral model.

Influenza virus uses the HA glycoprotein to attach and gain entry into cells. In developing vaccines, researchers target HA because raising anti-HA antibodies provide protection against the virus.

The use of the C3d subunit of complement combined with HA to prime the immune system against influenza constitutes a novel approach to immunization. When the vaccine is introduced into the body, the immune system recognizes HA and is stimulated by the C3d. The C3d stimulation increases the magnitude of the antibody response and accelerates the maturation of the raised antibody.

"This novel approach to vaccination primes the immune system on multiple fronts," said Dr. Harriet Robinson, who helped to develop the vaccine. "A protective response is mounted both in recognition of HA as an antigen and by the stimulatory effects of C3d."

DNA vaccines have several distinct advantages over conventional protein or attenuated virus vaccines. They can be manufactured inexpensively in a relatively short period of time and do not need to be refrigerated. Influenza is the only disease that has caused an actual dip in the human population in the 20th century. Outbreaks of influenza occur when the HA glycoprotein mutates (antigenic drift) or changes to a new subtype (antigenic shift).

Because of the virus's penchant for mutation, scientists must anticipate the next strain that will emerge when developing vaccines against influenza. Sometimes, of course, their predictions are inaccurate. To control emerging influenza pandemics, DNA vaccines, in contrast to conventional vaccines, could be rapidly deployed after the HA subtype of the particular influenza strain had been identified.

DNA vaccines are still in the experimental stages. Data from this latest study will enable VRC researchers to continue refining the DNA model in designing vaccines against influenza as well as other viruses, most notably HIV.

Drs. Ted Ross and Harriet Robinson, research specialist Yan Xu, and graduate student Rick Bright led the influenza vaccine study. It was funded by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Emory University Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

Emory University Health Sciences Center. "DNA-Based Flu Vaccine Raises Protective Immunity." ScienceDaily. ScienceDaily, 15 September 2000. <www.sciencedaily.com/releases/2000/09/000913203940.htm>.
Emory University Health Sciences Center. (2000, September 15). DNA-Based Flu Vaccine Raises Protective Immunity. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2000/09/000913203940.htm
Emory University Health Sciences Center. "DNA-Based Flu Vaccine Raises Protective Immunity." ScienceDaily. www.sciencedaily.com/releases/2000/09/000913203940.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins