Featured Research

from universities, journals, and other organizations

Stem Cells Graft In Spinal Cord, Restore Movement In Paralyzed Mice

Date:
November 6, 2000
Source:
Johns Hopkins Medical Institutions
Summary:
Scientists at Johns Hopkins report they’ve restored movement to newly paralyzed rodents by injecting stem cells into the animals’ spinal fluid. The researchers introduced neural stem cells into the spinal fluid of mice and rats paralyzed by an animal virus that specifically attacks motor neurons.

Scientists at Johns Hopkins report they’ve restored movement to newly paralyzed rodents by injecting stem cells into the animals’ spinal fluid. Results of their study were presented at the annual meeting of The Society for Neuroscience in New Orleans.

The researchers introduced neural stem cells into the spinal fluid of mice and rats paralyzed by an animal virus that specifically attacks motor neurons. Normally, animals infected with Sindbis virus permanently lose the ability to move their limbs, as neurons leading from the spinal cord to muscles deteriorate. They drag legs and feet behind them.

Fifty percent of the stem-cell treated rodents, however, recovered the ability to place the soles of one or both of their hind feet on the ground.

"This research may lead most immediately to improved treatments for patients with paralyzing motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and another disorder, spinal motor atrophy (SMA)," says researcher Jeffrey Rothstein, M.D., Ph.D.

"Under the best research circumstances," he adds, "stem cells could be used in early clinical trials within two years."

"The study is significant because it’s one of the first examples where stem cells may restore function over a broad region of the central nervous system," says neurologist Douglas Kerr, M.D., Ph.D., who led the research team. "Most use of neural stem cells so far has been for focused problems such as stroke damage or Parkinson’s disease, which affect a small, specific area," Kerr explains.

In the rodent study, however, injected stem cells migrated to broadly damaged areas of the spinal cord. "Something about cell death is apparently a potent stimulus for stem cell migration," says Kerr. "Add these cells to a normal rat or mouse, and nothing migrates to the spinal cord."

In the study of 18 rodents, the researchers injected stem cells into the animals’ cerebrospinal fluid via a hollow needle at the base of the spinal cord — like a spinal tap in reverse. Within several weeks, the cells migrated to the ventral horn, a region of the spinal cord containing the bodies of motor nerve cells.

"After 8 weeks, we saw a definite functional improvement in half of the mice and rats," says Kerr. "From 5 to 7 percent of the stem cells that migrated to the spinal cord appeared to differentiate into nerve cells, " he says. "They expressed mature neuronal markers on their cell surfaces. Now we’re working to explain how such an apparently small number of nerve cells can make such a relatively large improvement in function.

"It could be that fewer nerve cells are needed for function than we suspect. The other explanation is that the stem cells themselves haven’t restored the nerve cell-to-muscle units required for movement but that, instead, they protect or stimulate the few undamaged nerve cells that still remain. We’re pursuing this question now in the lab."

The rodents infected with the Sindbis virus are a tested model for SMA, Kerr noted. SMA is the most common inherited neurological disorder and the most common inherited cause of infant death, affecting between 1 in 6,000 and 1 in 20,000 infants. In the disease, nerve cells leading from the spinal cord to muscles deteriorate. Children are born weak and have trouble swallowing, breathing and walking. Most die in infancy, though some live into young childhood.

With ALS, which affects as many as 20,000 in this country, motor nerves leading from the brain to the spinal cord as well as those from the cord to muscles deteriorate. The disease eventually creates whole-body paralysis and death.

The research was funded by grants from the Muscular Dystrophy Association and Project ALS.

Other scientists were Nicholas Maragakis, M.D., John D. Gearhart, Ph.D., of Hopkins, and Evan Snyder, at Harvard.

Related Web sites:

This site describes SMA in detail: http://www.andrewsbuddies.org/whatissma.html

This site deals with ALS research at Hopkins: http://www.neuro.jhmi.edu/alscenter/index.html


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Stem Cells Graft In Spinal Cord, Restore Movement In Paralyzed Mice." ScienceDaily. ScienceDaily, 6 November 2000. <www.sciencedaily.com/releases/2000/11/001106061038.htm>.
Johns Hopkins Medical Institutions. (2000, November 6). Stem Cells Graft In Spinal Cord, Restore Movement In Paralyzed Mice. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2000/11/001106061038.htm
Johns Hopkins Medical Institutions. "Stem Cells Graft In Spinal Cord, Restore Movement In Paralyzed Mice." ScienceDaily. www.sciencedaily.com/releases/2000/11/001106061038.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins