Featured Research

from universities, journals, and other organizations

UCSD Researchers Discover Mechanism Of Natural Recovery From Spinal Cord Injury

Date:
March 14, 2001
Source:
University Of California, San Diego School Of Medicine
Summary:
Researchers have discovered that rats with spinal cord injuries show some motor-function recovery several weeks after injury based on spontaneous re-growth of spared nerves. This finding has potential to further advance recovery after spinal cord injury.

Researchers have discovered that rats with spinal cord injuries show some motor-function recovery several weeks after injury based on spontaneous re-growth of spared nerves. This finding has potential to further advance recovery after spinal cord injury.

Related Articles


The research was conducted at the University of California, San Diego (UCSD) School of Medicine and the Veterans Affairs Medical Center, San Diego, and is described in the March 13, 2001 issue of the Proceedings of the National Academy of Sciences.

In the study, researchers removed 97 percent of the connections in the rat spinal cord that coordinate movement of the forepaw and foot. Despite this loss, rats gradually began to recover coordinated movements of their forepaws and by four weeks after the injury were no different from intact rats.

Study of their spinal cords under the microscope showed that a small proportion of nerve fibers spared by the original injury – only 3 percent – grew new connections to increase their number of contacts with other cells by 331 percent. Called sprouting, like the branches of a tree after pruning, this re-growth occurred spontaneously without therapeutic intervention. When the researchers prevented sprouting from occurring, functional recovery did not occur.

Because approximately 40 percent of humans who suffer spinal cord injury, stroke or head trauma also show spontaneous recovery of motor function, the researchers believe the present findings may explain their recovery. For example, most humans with spinal cord trauma have small rims of spared tissue-containing nerves at the injury site, and many of these individuals show partial recovery of function over weeks and months.

The UCSD investigators who conducted the study are now testing whether sprouting can be enhanced experimentally to lead to better recovery. By nerve-site delivery of nerve growth factors – proteins that stimulate nerve growth – the researchers will determine whether sprouting can be enhanced and lead to further recovery.

The current study was conducted in the lab of Mark Tuszynski, M.D., Ph.D., UCSD associate professor of neurosciences and a neurologist with the VA Medical Center. Based on their findings in rats, Tuszynski and his team are studying monkeys to determine if similar sprouting and functional recovery occur, and if potential therapies such as nerve growth factor can stimulate natural axon re-growth.

In the rat experiments, surgical lesions were made to the corticospinal tract, an important section of the spinal cord system, vital for controlling skilled motor acts such as movements of limbs in rats and hands and feet in humans. The researchers found that natural recovery of motor function in the rats occurred when some spinal cord tissue – as little as 3 percent – survived the injury.

In post-mortem views of the rats’ spinal cords, the researchers observed re-growth of axons from the intact portion of the corticospinal tract. The sprouting “probably accounts for the improvement in function that occurs in humans weeks to months after spinal cord injuries, strokes or head trauma,” Tuszynski says.

However, when the corticospinal tract was completely severed in the rats, the researchers observed neither sprouting of axons nor functional recovery of motor skills.

The researchers made lesions in the rodents’ neck area, since most human spinal cord injuries occur in the cervical, or neck region. Several variations of lesions were made, to determine where and how the spinal cord was affected, and to measure the degree of recovery of functional motor skills.

One group of rats had lesions made to the dorsal, or upper back region of the spinal cord that contains 97 percent of corticopinal axons. Another group had lesions to the ventral, or upper front side, that contains about 3 percent of total axons. A third group received a dorsal lesion followed five weeks later by a lesion to the ventral component. Both ventral and dorsal regions were severed at the same time in a fourth group of rats, while a fifth group received a lesion of the medullary region, which causes an effect similar to severance of the ventral and dorsal regions together.

The functional abilities of the rats were measured by a pellet retrieval task. Prior to the surgeries, the rats were trained daily to extend their forepaws, grasp a food pellet, retract the limb and eat the pellet. Following surgery, researchers took precise measurements of the animals’ ability to perform these tasks. Measurement of axonal sprouting was obtained with post-mortem studies of the spinal cord neurons and axons.

Following complete lesions of the dorsal region, spontaneous sprouting occurred in the uninjured, considerably smaller ventral tract, and the number of new axonal connections increased by 331 percent. With the sprouting, the rats experienced extensive recovery of hand movement.

No functional recovery was noted in three groups – the rats with an initial dorsal lesion, followed five weeks later by a ventral lesion; the rats with both dorsal and ventral components severed at the same time; and the group with a medullary lesion.

In addition to Tuszynski, authors of the PNAS paper were UCSD Department of Neurosciences researchers Norbert Weidner, M.D.; Arvin Ner, B.S.; and Nima Salimi, B.S.

The work was funded by the National Institutes of Health, Veterans Affairs, the Canadian Spinal Research Organization, the Swiss Foundation for International Research into Paraplegia on behalf of the Sandoz Family Foundation, and the Hollfelder Foundation.


Story Source:

The above story is based on materials provided by University Of California, San Diego School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego School Of Medicine. "UCSD Researchers Discover Mechanism Of Natural Recovery From Spinal Cord Injury." ScienceDaily. ScienceDaily, 14 March 2001. <www.sciencedaily.com/releases/2001/03/010313074340.htm>.
University Of California, San Diego School Of Medicine. (2001, March 14). UCSD Researchers Discover Mechanism Of Natural Recovery From Spinal Cord Injury. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2001/03/010313074340.htm
University Of California, San Diego School Of Medicine. "UCSD Researchers Discover Mechanism Of Natural Recovery From Spinal Cord Injury." ScienceDaily. www.sciencedaily.com/releases/2001/03/010313074340.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins