Featured Research

from universities, journals, and other organizations

Individual’s Genes May Dictate Better Heart Failure Treatment

March 29, 2001
American Heart Association
Individuals genetically prone to fare poorly from heart failure appear to greatly benefit from beta-blocker medication, according to one of the first studies examining how genes impact drug effectiveness.

DALLAS, March 27 – Individuals genetically prone to fare poorly from heart failure appear to greatly benefit from beta-blocker medication, according to one of the first studies examining how genes impact drug effectiveness. The work is reported in today’s Circulation: Journal of the American Heart Association.

Related Articles

Researchers found that individuals with two copies of a particular form of an enzyme that increases blood pressure fared the worst with heart failure but fared the best with beta-blockers. This finding could lead to targeted individual treatment based on genetic makeup.

Angiotensin-converting enzyme or ACE activates a hormone to increase blood flow to vital organs. When the enzyme signals the need for higher blood pressure for the kidneys, it causes the failing heart to work harder. Eventually the heart wears out and a heart transplant is required to avoid death. Everyone has two copies of an ACE gene, which can take one of two forms – or alleles – the insertion (I) and the deletion (D) alleles, based on whether one small section of the gene is missing. The deletion (D) form of the gene was affected by beta blocker therapy.

“Having this D allele seemed to be a risk factor for doing poorly overall, but if you were on beta-blocker therapy this hazard was eliminated,” says Dennis M. McNamara, M.D., study leader and director of the heart failure section at the University of Pittsburgh Medical Center. “Those with two copies of the D allele (DD) clearly got the most benefit from beta-blocker therapy.”

McNamara is a leader in a new field of research called pharmacogenetics, which studies the interaction of drugs and genes.

“This is the first study to look at a very common genetic trait and its interaction with a very common therapy for heart failure,” he says. “One of our most significant findings was that the benefits of beta-blocker therapy in heart failure survival seem to be much different within the three classes of patients we defined genetically.”

Of the 328 heart failure patients in this study, 32 percent had two D alleles, 21 percent had two I alleles and 47 percent had one D and one I allele. As in the general population, about 79 percent had at least one D allele.

Most of the patients (87 percent) were on ACE-inhibitor therapy – drugs that block the enzyme’s effect, reducing the heart’s workload. In addition, 37 percent also took beta-blocker drugs, which reduce the heart’s output of blood.

Researchers followed the individuals for two years and found that among those who did not receive beta-blockers, only 48 percent in the DD group survived for two years without a transplant, compared to 81 percent among patients who had two I alleles (II). However, in those treated with beta-blockers, 77 percent of the DD group were alive and transplant-free after two years, virtually the same as the 70 percent found in the II group.

Larger studies are needed before genetics could be brought into treatment decisions, McNamara says. One limitation of the current study was that treatment was not randomly assigned. “My excitement about it remains that we will see targeting of therapy based on genetics in the next five or 10 years,” he says. “I have patients who that may be on six to eight classes of drugs and new ones are coming out all the time. We’ve got to find a way to get the right drugs to the right people and I believe genetics will be a key component of that targeting.” In an accompanying editorial, Dan M. Roden, M.D., professor of medicine and pharmacology and director of the division of clinical pharmacology at Vanderbilt University School of Medicine in Nashville, Tenn., and Nancy J. Brown, M.D., associate professor of medicine and pharmacology, praise the Pittsburgh team, but say too many questions remain to base clinical decisions on genetics.

For instance, although studies have consistently shown that DD individuals have more ACE activity, the mechanisms for it remain unclear, they write.

In addition, a number of small differences among the three groups in this study could have affected the results, such as the difference in the number of people taking ACE-inhibitors. There is also the possibility that the genetic differences studied here are linked to or interact with other genes with unknown effects.

“The new and intriguing finding in the present study was that the poor prognosis conferred by the D allele was improved ... in patients treated with the beta-blockers,” they write. More data from larger studies will help clarify the situation. That will take the cooperation of clinicians, so making them aware of pharmacogenetics’ potential is crucial, according to the editorial.

“McNamara and his colleagues are to be congratulated for taking an important first step in this direction,” they write.

McNamara’s co-authors include Richard Holubkov, Ph.D.; Karen Janosko, R.N., M.S.N.; Amy Palmer, M.A.; Jue J. Wang, M.S.; Guy A. MacGowan, M.D.; Srinivas Murali, M.D.; Warren D. Rosenblum, M.D.; Barry London, M.D., Ph.D.; and Arthur M. Feldman, M.D., Ph.D.

The work was funded in part by the National Heart, Lung and Blood Institute.

Story Source:

The above story is based on materials provided by American Heart Association. Note: Materials may be edited for content and length.

Cite This Page:

American Heart Association. "Individual’s Genes May Dictate Better Heart Failure Treatment." ScienceDaily. ScienceDaily, 29 March 2001. <www.sciencedaily.com/releases/2001/03/010327081631.htm>.
American Heart Association. (2001, March 29). Individual’s Genes May Dictate Better Heart Failure Treatment. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2001/03/010327081631.htm
American Heart Association. "Individual’s Genes May Dictate Better Heart Failure Treatment." ScienceDaily. www.sciencedaily.com/releases/2001/03/010327081631.htm (accessed March 30, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins