Featured Research

from universities, journals, and other organizations

Penn Researchers Explain The Mechanics Behind The Delayed Effects Of Brain Trauma; Findings May Chart Paths To Therapeutic Relief

Date:
April 4, 2001
Source:
University Of Pennsylvania Medical Center
Summary:
The initial twist and snap of physical injury to nerve cells and fibers in the brain during head trauma is only the beginning of the damage. Researchers at the University of Pennsylvania Medical Center have determined that one of the initial events triggering these long-term problems includes a massive flood of calcium ions, electrically charged calcium atoms, that enter axons following brain trauma.

(Philadelphia, PA) – The initial twist and snap of physical injury to nerve cells and fibers in the brain during head trauma is only the beginning of the damage. In particular, the stretching of nerve fibers, or "axons", can induce progressive damage leading to long-term problems such as memory dysfunction and difficulties with concentration.

Researchers at the University of Pennsylvania Medical Center have determined that one of the initial events triggering these long-term problems includes a massive flood of calcium ions, electrically charged calcium atoms, that enter axons following brain trauma. In addition, their study suggests a possible course of treatment for this pathologic process. The results of the study are published in The Journal of Neuroscience’s March issue.

Previously, researchers had only postulated that calcium entry into damaged axons was an important indicator for the start of progressive damage. Now this has not only been demonstrated, but a mechanism of this calcium entry has been discovered. "It appears that that the physical motions of trauma literally tears open proteins that act as gates on the axon membrane," explains Douglas Smith, MD, an associate professor in the Penn Department of Neurosurgery.

Surprisingly, the gates that were forced open were not for calcium ions, but for sodium ions. "We have now found that it is the rapid flow of sodium ions through the damaged gates that triggers a subsequent inflow of calcium ions," said Smith. "With this knowledge, we can evaluate therapies that block the sodium channels."

Early therapy targeting sodium channels may be critical to preventing the progressive damage to axons, which has been previously found by this research team. "It can be hours, even months, after a head injury before the damage to the axons becomes so severe that the neurons can no longer function," says Smith. "There is currently no cure to stop the delayed effect of head trauma, but we are convinced that the damage can be slowed down and, eventually, even stopped."


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Penn Researchers Explain The Mechanics Behind The Delayed Effects Of Brain Trauma; Findings May Chart Paths To Therapeutic Relief." ScienceDaily. ScienceDaily, 4 April 2001. <www.sciencedaily.com/releases/2001/04/010402072253.htm>.
University Of Pennsylvania Medical Center. (2001, April 4). Penn Researchers Explain The Mechanics Behind The Delayed Effects Of Brain Trauma; Findings May Chart Paths To Therapeutic Relief. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2001/04/010402072253.htm
University Of Pennsylvania Medical Center. "Penn Researchers Explain The Mechanics Behind The Delayed Effects Of Brain Trauma; Findings May Chart Paths To Therapeutic Relief." ScienceDaily. www.sciencedaily.com/releases/2001/04/010402072253.htm (accessed September 1, 2014).

Share This




More Mind & Brain News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins