Featured Research

from universities, journals, and other organizations

With An Eye On Safety, UF Experts Explore Cellular Mechanisms Of Gene Therapy

Date:
April 20, 2001
Source:
University Of Florida
Summary:
In an era of heightened concern about gene therapy safety, a new University of Florida study provides reassurance that corrective DNA can be administered without simultaneously causing harmful genetic changes.

GAINESVILLE, Fla. - In an era of heightened concern about gene therapy safety, a new University of Florida study provides reassurance that corrective DNA can be administered without simultaneously causing harmful genetic changes.

The findings, published in the March 27th issue of the Proceedings of the National Academy of Sciences, begin to answer an important question: Does an inserted package of genetic material actually incorporate itself into the receiving cell's DNA?

Scientists had worried that if the genetic material did integrate into the cell's own genetic wiring by becoming part of a chromosome, it potentially could disrupt the function of a healthy gene or lead to tumor development. The new research shows that in mice, new genes delivered inside a modified adeno-associated virus dwell independently in cells, reducing the risk of such problems.

"Even though we have never seen any problems from the AAV vector we use for gene therapy, we needed to know where the delivered DNA is going within the cell," said Sihong Song, lead author of the paper and a research assistant professor in the UF College of Medicine's pediatrics department. "We need to understand how it really works, so that we can design safer and more effective gene therapy vehicles."

Composed of DNA, genes are the basic unit of inheritance and provide the instruction manual for how to make the body function. If a person has inherited a faulty version of a critical gene, lifelong disease may result. In gene therapy, researchers seek to reduce or eliminate disease symptoms by providing a patient with working copies of a corrective gene so that cells in the affected tissues may begin following a new set of marching orders.

At UF and elsewhere, a growing number of laboratory experiments and clinical trials are employing AAV to essentially "infect" cells with corrective DNA. A common virus that has not been linked to any illness, AAV can be modified so that it includes a wide variety of genes in an effort to treat numerous conditions, such as cystic fibrosis, hemophilia, and genetic forms of blindness and heart and lung diseases.

"The main potential safety problem in gene therapy comes from the vector rather than from the gene being delivered," said Dr. Terence R. Flotte, an associate professor of pediatrics, director of UF's Genetics Institute and co- director of the Powell Gene Therapy Center. "The strength of our own center has been the focus on this one particular vector that doesn't cause the side effects, such as inflammation, seen with other vectors.

"But you always have to consider the side effects that could occur," Flotte said. "Theoretically, the greatest potential risk is that the DNA from the virus will insert into the DNA of the cell and in doing so change the characteristics of the cell from being a normal cell to a cancer cell. One way this might occur would be if the new DNA was able to effectively switch on a previously silent tumor-causing gene."

In studies in people and animals conducted during the past decade, UF scientists have never seen tumor development associated with AAV-delivered gene therapy, but they wanted to make sure that wasn't an extremely rare side effect they simply hadn't run across.

In its natural state, AAV does incorporate into a host cell's chromosome, but almost always at the same specific site, where it apparently causes no harm. However, in its recombinant form - in which much of its natural DNA is spliced away and what remains is combined with a corrective gene - AAV no longer zeroes in on the same target, Flotte said.

Instead, UF's experiment showed that a protein in the receiving cell helps "tie up" the ends of the recombinant AAV so that it acts as if it were a tiny independent chromosome within the cell's nucleus, Flotte said. The protein - DNA-dependent protein kinase - is abundant in human cells.

"That puts it into a relatively safe form in which the therapy can work but where it's not likely to trigger the formation of a tumor," he said.

The scientists discovered the protein's role in the process by comparing gene therapy in two strains of mice. A mutation in one of the strains prevents mice from producing the protein.

"In the absence of this protein, over time, much of newly inserted DNA integrates into the host cell's chromosome. Theoretically, that's the kind of event that in some small percentage of cases would be harmful," Flotte said.

"But in the presence of this protein, the new DNA stayed in this independent string form. We saw no detectable integrations. These experiments were conducted in mice, rather than people, but from these mouse models we've been able to get a very good understanding of cellular mechanisms of gene therapy."

Song noted that in other experiments using human cell cultures, the protein also prevented AAV from integrating into a chromosome.

Dr. Kenneth I. Berns, UF's vice president for health affairs and an early pioneer of using AAV as a gene therapy vector, and Philip J. Laipis, a professor and associate chairman of the College of Medicine's biochemistry and molecular biology department, also contributed to the research effort.


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "With An Eye On Safety, UF Experts Explore Cellular Mechanisms Of Gene Therapy." ScienceDaily. ScienceDaily, 20 April 2001. <www.sciencedaily.com/releases/2001/04/010412075939.htm>.
University Of Florida. (2001, April 20). With An Eye On Safety, UF Experts Explore Cellular Mechanisms Of Gene Therapy. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2001/04/010412075939.htm
University Of Florida. "With An Eye On Safety, UF Experts Explore Cellular Mechanisms Of Gene Therapy." ScienceDaily. www.sciencedaily.com/releases/2001/04/010412075939.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins