Featured Research

from universities, journals, and other organizations

HIV's Deadly Assault On Immune Cells Chronicled In Step-By-Step Account Of Viral Invasion

Date:
June 28, 2001
Source:
University Of California, San Diego School Of Medicine
Summary:
Using sophisticated post-genomic technology, a team of researchers has looked deep within the body’s immune cells and recorded the molecular events triggered by invasion of the human immunodeficiency virus (HIV), creating a detailed account of the devastating progression of cellular injury following HIV infection.

Using sophisticated post-genomic technology, a team of researchers has looked deep within the body’s immune cells and recorded the molecular events triggered by invasion of the human immunodeficiency virus (HIV), creating a detailed account of the devastating progression of cellular injury following HIV infection.

HIV kills critical immune cells called CD4+ T cells, eventually leading to full-scale destruction of the immune system and AIDS. The precise choreography and mechanisms by which HIV causes CD4+ T cells to die has not been detailed until now.

This first-ever sequential record of the multiple steps leading to immune cell death due to HIV infection was created by simultaneously monitoring nearly 7,000 genes at eight points in time over 72 hours, using microarray gene chip technology and a software program designed by UCSD bioinformatics specialists.

The results, published in the July 2001 issue of Genome Research, demonstrate in detail how efficiently HIV commits its cellular coup d'etat, rapidly taking over the cell's DNA machinery and inserting its own viral blueprints for destruction, suppressing vital survival and repair functions, and inducing the cell to kill itself.

"Better understanding of the steps involved in HIV destruction of immune system cells opens the door to new investigations of methods to potentially block or prevent HIV infection," said Jacques Corbeil, Ph.D., assistant professor of medicine at the University of California, San Diego (UCSD) School of Medicine and the paper's first author.

This study of the specific genetic events in the CD4+ T cell, from infection to cell death, involved medical researchers, bioengineers, and bioinformatics experts from UCSD; the San Diego Supercomputer Center at UCSD; the Veterans Affairs (VA) San Diego Healthcare System, and Affymetrix, the company that develops GeneChips® probe arrays to measure whether individual genes are dormant or active.

Their findings show that HIV suppresses genes vital to immune cell maintenance and repair, while activating a cell-death process called apoptosis.

The scientists utilized UCSD-developed software called 2HAPI (High-density Array Pattern Interpreter, version 2) to analyze the expression of nearly 7,000 genes, the largest number ever studied by HIV researchers.

“With this technology, our ability to study HIV has moved from observing clinical manifestations of HIV, to studying the molecular machinery of the cell as the virus changes and effects the cell’s living process,” said Daniel Masys, M.D., Director of Biomedical Informatics at UCSD School of Medicine and co-inventor of the HAPI software. This web-based microarray analysis tool was developed by members of the UCSD Center for AIDS Research Genomics core, the San Diego Supercomputer Center, and the UCSD Cancer Center, and is available at http://www.array.ucsd.edu.

To track gene activity in the infected cells, the team used Affymetrix GeneChips®, silicon chips coated with DNA fragments representing known sequences of genes. Simply stated, when these chips are exposed to specially labeled cells, the DNA seeks and binds to active genes within the cell, providing a snapshot of gene expression within the cell at a specific point in time. The chips produce vast amounts of data indicating which genes are activated, which must then be interpreted using computer analysis.

For this study, an HIV infected CD4+T cell line was monitored following infection at several time intervals, from 30 minutes to 72 hours after exposure. For each interval, 10 million infected cells were applied to the microarray gene chips. A control sample of healthy cells was analyzed at the same intervals for comparison.

The 2HAPI software provides automated linkage of data produced by microarray gene chip technology regarding simultaneous expression of thousands of genes, to published information about the expressed genes and gene clusters, allowing investigators to analyze and interpret the relevant gene activity.

The resulting data show how effectively HIV invades and overpowers the host cell's DNA, integrating its own infectious DNA into the host's cellular machinery, poisoning genes and altering the cellular energy source, quashing the cell’s DNA repair mechanism, and setting in motion the cell-suicide process of apoptosis.

Within hours of entering the immune cell, HIV suppresses genes that regulate and maintain a constant and healthy internal environment. The virus cripples enzymes essential for function of the mitochondria, cellular structures that serve as the source of energy needed to sustain life and growth. And, HIV suppresses the genes that ordinarily repair altered cellular DNA, rendering the cell incapable of mending HIV-induced damage as it occurs.

The power of HIV to shut down normal genes and activate others is impressive, and begins immediately. Only 30 minutes after exposure to HIV, more than 500 genes were shut down in the infected cells. Conversely, nearly 200 genes were uniquely activated in the infected cells compared with normal cells. These included genes associated with cellular defense against invasion, and "suicide" genes that normally remain dormant until switched on as part of the normal cycle of cell death.

By shutting down important genes, and activating others programmed to kill the cell, HIV proves to be a swift and deadly predator. Within three days of infection, the HIV-exposed cells had only half the 1,400 active genes normally found within the healthy cell.

“Now that we have the ability to see the specific genes that are modulated by HIV, we’re probing further to find the promoter regions of these genes where activation begins or is suppressed,” Corbeil says. “We want to determine how they are expressed as well as the length of time the genes are turned on or off.”

The research was supported by the National Institute of Allergy and Infectious Diseases, the Center for AIDS Research Genomics Core laboratory, the Universitywide AIDS Research program, the San Diego Veterans Medical Research Foundation, and the San Diego VA Healthcare System.

In addition to Corbeil, authors of the Genome Research paper included Masys; Thomas Gingeras, Ph.D., Affymetrix; UCSD Department of Medicine researchers Davide Genini, Ph.D., Steffney Rought, Ph.D.,Lorenzo Leoni, Ph.D., Pinyi Du, B.S., and Mark Ferguson, B.S.; UCSD Department of Pathology researchers Dennis Sheeter, B.S. and John B. Welsh, M.D., Ph.D.; Lynn Fink, B.S., San Diego Supercomputer Center; Roman Sasik, Ph.D.,UCSD Department of Physics; Affymetrix researchers David Huang, B.S. and Jorg Drenkow, B.S.;and Douglas D. Richman, M.D., UCSD Departments of Medicine and Pathology, San Diego VA Medical Center and Veterans Medical Research Foundation.


Story Source:

The above story is based on materials provided by University Of California, San Diego School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego School Of Medicine. "HIV's Deadly Assault On Immune Cells Chronicled In Step-By-Step Account Of Viral Invasion." ScienceDaily. ScienceDaily, 28 June 2001. <www.sciencedaily.com/releases/2001/06/010613072334.htm>.
University Of California, San Diego School Of Medicine. (2001, June 28). HIV's Deadly Assault On Immune Cells Chronicled In Step-By-Step Account Of Viral Invasion. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2001/06/010613072334.htm
University Of California, San Diego School Of Medicine. "HIV's Deadly Assault On Immune Cells Chronicled In Step-By-Step Account Of Viral Invasion." ScienceDaily. www.sciencedaily.com/releases/2001/06/010613072334.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) — Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins