Featured Research

from universities, journals, and other organizations

Structure Solved By Scripps Scientists Marks Important Milestone In Effort To Develop HIV Vaccine

Date:
August 13, 2001
Source:
Scripps Research Institute
Summary:
Scientists working in The Skaggs Institute for Chemical Biology at The Scripps Research Institute (TSRI) and at the Glycobiology Institute at Oxford University in the United Kingdom, have elucidated the structure of an antibody that effectively neutralizes human immunodeficiency virus (HIV), reported in the current issue of the journal Science.

Scientists working in The Skaggs Institute for Chemical Biology at The Scripps Research Institute (TSRI) and at the Glycobiology Institute at Oxford University in the United Kingdom, have elucidated the structure of an antibody that effectively neutralizes human immunodeficiency virus (HIV), reported in the current issue of the journal Science. Designated b12, the antibody has a long finger-like region on its surface that penetrates the surface of the main viral glycoprotein gp120 on the HIV virus and prevents it from causing disease. The authors hope that the structure of this region will provide a basis for the design of effective vaccines against the HIV virus.

Related Articles


"A lot of people in the HIV field are excited by this structure," says Professor Ian Wilson, D. Phil., of the The Skaggs Institute and Department of Molecular Biology. "It clearly illustrates the sort of antibody you need to raise in order to have an effective vaccine against HIV."

HIV causes AIDS by binding to, entering, and, ultimately, leading to the killing of certain blood cells—distinguished by a certain protein, called CD4, that these cells carry on their surfaces. T cells and macrophages, which both carry CD4, are necessary to fight off infections by common bacteria and other pathogens, and these pathogens become potentially lethal to patients after their own immune system destroys the infected CD4 cells.

One of the most compelling medical challenges today is to develop a vaccine that will provide complete prophylactic protection to someone who is later exposed to this virus.

An important part of such a vaccine will be an effective neutralizing antibody against HIV.

Also called immunoglobins, these antibodies would be produced by the body's B cells after HIV enters the bloodstream. During such an immune response, the antibodies would circulate through the blood, and track down and kill the virus.

Normally, the antibodies that the body produces to fight HIV are ineffective because much of the surface of the virus is inaccessible.

"HIV is coated with carbohydrates," says scientist Erica Ollmann Saphire, Ph.D., who is first author on the paper. "They cloak the virus."

Even worse, antibodies mostly recognize long protein loops on the outside of the virus, and in the body HIV rapidly mutates so that these loops become unrecognizable. The antibody b12, though, appears to be effective against a wide variety of HIV isolates. This is because it binds to part of the HIV that cannot mutate—the region of the virus that must bind to CD4. The antibody neutralizes the virus, making it unable to invade cells. A further problem is that the virus sheds its cell surface gp120 and antibodies raised against this viral debris are ineffective against the intact virus. Thus, the shed viral proteins act as a decoy to divert the immune response from the virus itself.

First identified in the bone marrow of a 31-year-old male who had been HIV positive without symptoms for six years, b12 demonstrates the human immune system is capable of raising antibodies that are effective against HIV, and scientists will now be investigating the ways in which this type of immune response can be triggered.

Another notable fact about this accomplishment is that this structure is the first human antibody to be solved in its entirety. Normally, scientists only solve a piece of an antibody—the fragment at the end—because whole antibodies do not form good crystals, an important first step in solving a structure. But by working with an antibody preparation that was unusually pure, the team managed to make crystals and solve the structure.

The research article, "Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design" is authored by Erica Ollmann Saphire, Paul W.H.I. Parren, Ralph Pantophlet, Michael B. Zwick, Robyn L. Stanfield, Garrett M. Morris, Pauline M. Rudd, Raymond A. Dwek, Dennis R. Burton, and Ian A. Wilson, and appears in the August 10, 2001 issue of the journal Science.

The research was funded in part by the National Institutes of Health and The Skaggs Institute for Research.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Structure Solved By Scripps Scientists Marks Important Milestone In Effort To Develop HIV Vaccine." ScienceDaily. ScienceDaily, 13 August 2001. <www.sciencedaily.com/releases/2001/08/010813081505.htm>.
Scripps Research Institute. (2001, August 13). Structure Solved By Scripps Scientists Marks Important Milestone In Effort To Develop HIV Vaccine. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2001/08/010813081505.htm
Scripps Research Institute. "Structure Solved By Scripps Scientists Marks Important Milestone In Effort To Develop HIV Vaccine." ScienceDaily. www.sciencedaily.com/releases/2001/08/010813081505.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins