Featured Research

from universities, journals, and other organizations

Vaccination Following Spinal Cord Injury: Innovative Weizmann Institute Approach Limits Paralysis

Date:
August 17, 2001
Source:
Weizmann Institute
Summary:
Weizmann Institute scientists have proposed an innovative approach for preventing complete paralysis after partial spinal cord injury. The approach consists of boosting the body's natural immune mechanisms to improve the outcome of trauma.

New York, NY, August 17, 2001 -- Weizmann Institute scientists have proposed an innovative approach for preventing complete paralysis after partial spinal cord injury. The approach consists of boosting the body's natural immune mechanisms to improve the outcome of trauma.

The team of Prof. Michal Schwartz of the Weizmann Institute's Neurobiology Department has in the past already developed one immune-based therapy for the spinal cord, currently being tested in humans by Proneuron Biotechnologies Ltd. That therapy is aimed at repairing the spinal cord after a complete injury. The new approach pursues a related but different therapeutic target: to limit degeneration after a partial spinal cord injury. The scientists report their latest results in the August 15 issue of the Journal of Clinical Investigation.

Following injury to the central nervous system (brain or spinal cord), a wave of damage spreads from the injury site over several days or weeks, killing nerve cells and fibers that survived the initial trauma. This secondary degeneration can be even more destructive than the initial damage. As a result, an injury that initially inflicted only partial damage on the nerve tissue in the spinal cord may eventually result in total paralysis.

In the United States alone, approximately 10,000 people sustain a spinal cord injury each year. More than half of these injuries are classified as incomplete, or partial, meaning that some nerve fibers survived the initial trauma. If the surviving tissue could be protected against secondary degeneration, this would significantly improve the final outcome.

In the past, Schwartz and colleagues showed that autoimmune T cells -- the white blood cells of the immune system that interact with the body's own tissues -- have a protective effect on damaged tissue in the spinal cord, reducing secondary degeneration. This protective response is the body's own way of minimizing the consequences of trauma. However, the naturally occurring T-cell response is restricted in its effectiveness.

In the new study, rats were vaccinated soon after severe partial injury to the spinal cord with peptides, or protein fragments, derived from the central nervous system. The peptides were selected so that they would boost the natural protective mechanisms of the immune system without triggering an autoimmune disease. Rats vaccinated with the peptides showed significant recovery of movement.

Tissue analysis revealed that the treated animals had substantially more healthy nerve fibers in the spinal cord than the untreated rats, suggesting that the treatment protected the animals from secondary degeneration. Results indicate that the therapeutic window for T-cell-based treatment is at least one week after injury. This approach may also prove effective in other disorders of the central nervous system, such as stroke or traumatic brain injury.

Professor Schwartz's team included Ehud Hauben, Eugenia Agranov, Amalia Gothilf, and Uri Nevo of the Weizmann Institute, and Avi Cohen and Igor Smirnov of Proneuron Biotechnologies Ltd. Her research is supported by Proneuron Biotechnologies Ltd., the Jerome and Binnette Lipper Medal, the Daniel Heumann Fund for Spinal Cord Research and in part by grants from the Glaucoma Research Foundation and the Alan T. Brown Foundation to Cure Paralysis. Michal Schwartz holds the Maurice and Ilse Katz Chair of Neuroimmunology.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Story Source:

The above story is based on materials provided by Weizmann Institute. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute. "Vaccination Following Spinal Cord Injury: Innovative Weizmann Institute Approach Limits Paralysis." ScienceDaily. ScienceDaily, 17 August 2001. <www.sciencedaily.com/releases/2001/08/010817081453.htm>.
Weizmann Institute. (2001, August 17). Vaccination Following Spinal Cord Injury: Innovative Weizmann Institute Approach Limits Paralysis. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2001/08/010817081453.htm
Weizmann Institute. "Vaccination Following Spinal Cord Injury: Innovative Weizmann Institute Approach Limits Paralysis." ScienceDaily. www.sciencedaily.com/releases/2001/08/010817081453.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins