Featured Research

from universities, journals, and other organizations

Balls Stick, Shoes Slide: Serving Up Tennis Court Physics

Date:
August 30, 2001
Source:
American Institute Of Physics
Summary:
Not all tennis surfaces are created equal, as Jennifer Capriati found out at Wimbledon in July. After winning the Australian Open on hard courts, and French Open on clay courts, Capriati lost on the grass of Wimbledon in the semi-finals. Now a physics professor at the University of Sydney is looking into some of the peculiar properties of clay tennis courts - which may explain why players like Capriati are able to triumph on clay courts, but may stumble on grass.

Not all tennis surfaces are created equal, as Jennifer Capriati found out at Wimbledon in July. After winning the Australian Open on hard courts, and French Open on clay courts, Capriati lost on the grass of Wimbledon in the semi-finals. Now a physics professor at the University of Sydney is looking into some of the peculiar properties of clay tennis courts - which may explain why players like Capriati are able to triumph on clay courts, but may stumble on grass.

"Different surfaces are characterized by their speed and bounce," says Professor Rod Cross. In the September issue of The Physics Teacher, Cross explains that "clay courts are covered with a layer of fine sand that allows a player to slide into and out of a shot much more easily than on grass." But Cross found that while the player can slide more easily, the sand actually causes the ball to "stick" to the court, slowing it down. "In this sense," says Cross, "clay courts can be either fast or slow depending on whether we are referring to the ball or the player."

A player can slide without slipping, says Cross, because the very fine sand on clay tennis courts acts like ball bearings under a player’s shoe. "If the grains were perfect spheres," he explains, "the surface would be extremely slippery." But sand actually has pointy bits with rounded ends, so it doesn’t end up being too slippery. On the other hand, the cloth of a tennis ball actually captures and drags sand when it hits the court, making it behave like sandpaper, slowing it down.

Players are good at adapting to different surfaces, says Cross. "On a fast grass court, they serve as fast as possible; on clay, they drop the serve speed in order to put more spin on the ball." The result is a fast, low bounce on grass, which is hard to return, and on clay a slower, higher bounce, which is also hard to return.

And hard courts like the ones used in the US Open? They’re somewhere in between. "Hard courts are medium speed," says Cross, "and medium to high bounce." And that could be good news for Jennifer Capriati – who has already shown her strength on hard courts this year.


Story Source:

The above story is based on materials provided by American Institute Of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute Of Physics. "Balls Stick, Shoes Slide: Serving Up Tennis Court Physics." ScienceDaily. ScienceDaily, 30 August 2001. <www.sciencedaily.com/releases/2001/08/010830082203.htm>.
American Institute Of Physics. (2001, August 30). Balls Stick, Shoes Slide: Serving Up Tennis Court Physics. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2001/08/010830082203.htm
American Institute Of Physics. "Balls Stick, Shoes Slide: Serving Up Tennis Court Physics." ScienceDaily. www.sciencedaily.com/releases/2001/08/010830082203.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins