Featured Research

from universities, journals, and other organizations

Growth Factor Stimulation Leads To Increase In New Neurons In The Brain

Date:
August 31, 2001
Source:
Emory University Health Sciences Center
Summary:
Emory University researchers have demonstrated that several regions of the adult rat brain have the capacity to acquire new neurons following the introduction of a growth factor into the brain’s lateral ventricle, located in the depths of the cerebral cortex. The study is the first to show the presence of numerous new neurons in certain regions of the brain where they previously have not been found, and suggests that the adult brain may be able to replace neurons lost due to injury or disease.

Emory University researchers have demonstrated that several regions of the adult rat brain have the capacity to acquire new neurons following the introduction of a growth factor into the brain’s lateral ventricle, located in the depths of the cerebral cortex. The study is the first to show the presence of numerous new neurons in certain regions of the brain where they previously have not been found, and suggests that the adult brain may be able to replace neurons lost due to injury or disease. The results were published in the September 1 issue of the Journal of Neuroscience.

Related Articles


The research team, headed by Emory Professor of Cell Biology Marla Luskin, Ph.D., also included Emory cell biology fellow Viorica Pencea, M.D., Kimberly Bingaman, M.D. and Stanley Wiegand, Ph.D., of Regeneron Pharmaceuticals, Inc.

Although the majority of neurons in the forebrain of mammals are formed prenatally, scientists have learned over the past few years that certain areas of the adult brain can produce new neurons, including the hippocampus and the subventricular zone (a cell layer surrounding the lateral ventricles of the forebrain).

The Emory scientists administered the growth factor BDNF (brain-derived neurotrophic growth factor) into the lateral ventricle of the brains of adult rats for approximately two weeks, and waited another two weeks before they examined the brains for the presence of new cells. They detected newly generated neurons in several forebrain structures, including in the parenchyma (gray matter) of the striatum, septum, thalamus and hypothalamus — areas that serve a multitude of cognitive and vital neurological functions. The newborn cells were identified by infusing the brain with the cell proliferation marker BrdU, which serves as a permanent label for newborn cells, in conjunction with the BDNF. Until this study was done, neurogenesis (the production of neurons) had not been demonstrated in the thalamus and hypothalamus during postnatal life, and in only very limited numbers in the septum and striatum.

Earlier studies had shown that most new cells in the adult brain originate in the subventricular zone surrounding the lateral ventricles. Furthermore, Dr. Luskin’s experiments previously showed that a specialized region of the postnatal subventricular zone contains progenitor cells whose progeny (daughter cells) migrate along a pathway known as the rostral migratory stream to the olfactory bulb. Dr. Luskin and colleagues demonstrated that the special region of the subventricular zone and the rostral migratory stream contain a unique population of dividing neurons (neuronal progenitor cells). Everywhere else in the brain, neurons are post-mitotic cells (unable to divide). Dr. Luskin’s previous experiments demonstrate that BDNF infusion leads to an immense increase in the numbers of new neurons in the rostral migratory stream and olfactory bulb, a portion of the brain involved in the processing of smells..

"These studies led us to investigate whether infusing BDNF could influence the proliferation and/or survival of neurons in other regions of the adult forebrain as well," Dr. Luskin said. "The number of new neurons we found in regions such as the striatum and hypothalamus suggests to us that the adult forebrain has a more profound capacity to produce new neurons than previously has been recognized," she said.

The researchers hope their findings may reveal novel ways of producing large numbers of new neurons to replace diseased or damaged cells in localized parts of the brain. Future studies will continue to address the mode of action of BDNF, whether the population of new neurons is sustained long after the infusion of BDNF is terminated and whether cells within the gray matter parenchyma can divide when exposed to BDNF, as the studies suggest.

The research was supported by grants from the National Institute of Deafness and Other Communicative Disorders of the National Institutes of Health (NIH).


Story Source:

The above story is based on materials provided by Emory University Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

Emory University Health Sciences Center. "Growth Factor Stimulation Leads To Increase In New Neurons In The Brain." ScienceDaily. ScienceDaily, 31 August 2001. <www.sciencedaily.com/releases/2001/08/010831092954.htm>.
Emory University Health Sciences Center. (2001, August 31). Growth Factor Stimulation Leads To Increase In New Neurons In The Brain. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2001/08/010831092954.htm
Emory University Health Sciences Center. "Growth Factor Stimulation Leads To Increase In New Neurons In The Brain." ScienceDaily. www.sciencedaily.com/releases/2001/08/010831092954.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins