Featured Research

from universities, journals, and other organizations

Researchers Think Electrons Can "Supernova Surf" At Near Lightspeed

Date:
November 14, 2001
Source:
University Of Warwick
Summary:
Researchers have long been puzzled about the origins of cosmic rays – high energy particles which move very close to the speed of light. Now a team of scientists from the UK and Sweden think that an idea for a particle accelerator first put forward twenty years ago might explain how high energy cosmic ray electrons are produced close to the remnants of exploded stars (“supernovae”).

Researchers have long been puzzled about the origins of cosmic rays – high energy particles which move very close to the speed of light. Now a team of scientists from the UK and Sweden think that an idea for a particle accelerator first put forward twenty years ago might explain how high energy cosmic ray electrons are produced close to the remnants of exploded stars (“supernovae”).

Related Articles


These very high speed electrons betray their presence by emitting “synchrotron” radiation as they gyrate in a magnetic field. Until now however it has been far from clear why the electrons are accelerated to such high energies.

Researchers from the University of Warwick, the Culham Science Centre in Oxfordshire, and Linköping University in Sweden used computer simulations to investigate the behaviour of electrons in the presence of a magnetic field and a wave consisting of an oscillating electric field, and found that, depending on the intensities of the magnetic field and the wave, and the direction in which the wave is moving, it is possible for a charged particle, such as an electron, to be accelerated indefinitely by the wave electric field.

This idea was proposed by physicists Tom Katsouleas and John Dawson at the University of California Los Angeles in 1983 as a novel method of producing high energy charged particles in the lab, with the wave being provided by a laser. The term “surfatron” was coined to describe this type of accelerator, because the particles ride across the wave front like surfers riding across an ocean wave.

There are no lasers in supernova remnants, but the Warwick, Culham and Linköping researchers believe that the rapid expansion of a supernova remnant into space creates shock waves that accelerate ions. These ions then generate waves which can play a role similar to that of the laser in the surfatron concept. The analogy is not exact. For example, whereas the surfatron laser has only a single wavelength, in the case of the supernova remnant it is impossible to avoid the generation of waves with a range of wavelengths: this makes it more likely that particles will eventually stop gaining energy. However, the Culham-Warwick-Linköping team has shown that acceleration of electrons to speeds approaching that of light is still possible in these circumstances. The Warwick-Culham-Linköping research will be published in the journal Physical Review Letters in early December.

###

The researchers acknowledge funding from the PPARC, the Department of Trade and Industry, the Commission of the European Communities, and Naturvetenskapliga forskningsrådet (NFR).


Story Source:

The above story is based on materials provided by University Of Warwick. Note: Materials may be edited for content and length.


Cite This Page:

University Of Warwick. "Researchers Think Electrons Can "Supernova Surf" At Near Lightspeed." ScienceDaily. ScienceDaily, 14 November 2001. <www.sciencedaily.com/releases/2001/11/011114072057.htm>.
University Of Warwick. (2001, November 14). Researchers Think Electrons Can "Supernova Surf" At Near Lightspeed. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2001/11/011114072057.htm
University Of Warwick. "Researchers Think Electrons Can "Supernova Surf" At Near Lightspeed." ScienceDaily. www.sciencedaily.com/releases/2001/11/011114072057.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) — Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Raw: Astronauts Arrive at ISS for 1-Year Mission

Raw: Astronauts Arrive at ISS for 1-Year Mission

AP (Mar. 28, 2015) — The capsule carrying a Russian and an American who are to spend a year away from Earth docked Saturday with the International Space Station. (March 28) Video provided by AP
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) — Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
Why So Many People Think NASA's Asteroid Mission Is A Waste

Why So Many People Think NASA's Asteroid Mission Is A Waste

Newsy (Mar. 27, 2015) — The Asteroid Retrieval Mission announced this week bears little resemblance to its grand beginnings. Even NASA scientists are asking, "Why bother?" Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins