Featured Research

from universities, journals, and other organizations

UT Southwestern Scientists Explain How The Injured Brain Remodels Itself

Date:
November 23, 2001
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Researchers at UT Southwestern Medical Center at Dallas have begun to reveal the cellular mechanisms critical for restoring brain functions after traumatic injuries - a step that could lead to effective treatments of paralysis and other brain and spinal-cord damage.

DALLAS - Nov. 1, 2001 - Researchers at UT Southwestern Medical Center at Dallas have begun to reveal the cellular mechanisms critical for restoring brain functions after traumatic injuries - a step that could lead to effective treatments of paralysis and other brain and spinal-cord damage.

The study indicated that the injured brain's long-observed restorative powers at least partially derive from generating waves of adult-neural stem cells, or specialized precursors, to develop into critically needed replacement neurons and astrocytes. Neurons, the basic building blocks of the nervous system, and astrocytic cells, which provide metabolic functions between neurons and blood vessels, are crucial to restoring or remodeling damaged brain and spinal-cord tissue.

Published in the Nov. 1 issue of the Journal of Neuroscience Research, the study involving adult mice showed that following traumatic brain injury, the brain's stem-cell proliferation continues at a rapid pace and persists over a much longer time than expected, both at the injury site and even in the most-distant areas affected by the injury, said Dr. Steven G. Kernie, assistant professor of pediatrics and lead researcher.

The findings suggest that manipulating the expression of stem-cell regulators might accelerate or prolong the regeneration of neurons in humans, said Kernie, who collaborated with Dr. Luis F. Parada, director of the Center for Developmental Biology and the Kent Waldrep Foundation Center for Basic Research on Nerve Growth and Regeneration.

"We wanted to answer some basic questions about the persistence of neural stem cells proliferating into adulthood," Kernie said. "Our study of traumatic brain injuries in adult mice found that nature's own restorative powers are more extensive than previously thought. Perhaps even more exciting, we found that the regenerative powers are widespread, not just in the immediate area of the injury. Though using mice, our study raises the possibility that similar brain-remodeling processes may occur in humans."

The study examined three mice groups. They were tested for indicators of stem-cell growth at post-injury intervals of 24 hours, seven days and 60 days.

"As one might expect, the neural repairs or remodeling were most prominent in and near the injury for the short term, but the study also showed long-term remodeling for the injured mice at a rate five times greater than expected in the distant injury-affected areas," Kernie said.

With more research in mice and humans to confirm and build on the current findings, he said, scientists might be able to develop new human medical therapies to enhance an injured brain's or spinal cord's restorative capabilities.

In the long term, Kernie said, the current results also raise hopes of developing new or more effective human therapies using embryonic or adult stem cells for reducing or overcoming paralysis and other severe brain and spinal-cord injuries.

Until now, he said, this area of intensive investigation has produced only limited understanding of how a brain injury might affect the ability of the neural stem cells to multiply and repopulate or repair injured areas.

The study was funded by the Christopher Reeve Paralysis Foundation Consortium on Spinal Cord Injury, the Kent Waldrep Foundation Center for Basic Research on Nerve Growth and Regeneration, and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Scientists Explain How The Injured Brain Remodels Itself." ScienceDaily. ScienceDaily, 23 November 2001. <www.sciencedaily.com/releases/2001/11/011120055541.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2001, November 23). UT Southwestern Scientists Explain How The Injured Brain Remodels Itself. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2001/11/011120055541.htm
University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Scientists Explain How The Injured Brain Remodels Itself." ScienceDaily. www.sciencedaily.com/releases/2001/11/011120055541.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins