Featured Research

from universities, journals, and other organizations

Scientists Describe Structures Of Protein Molecules That Enable Two-Way Signaling Between Cells

Date:
December 20, 2001
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Two neuroscientists from UT Southwestern Medical Center at Dallas collaborated with cancer investigators in New York and Australia to determine the structures of protein molecules that bind together to initiate two-way signaling between human cells.

Two neuroscientists from UT Southwestern Medical Center at Dallas collaborated with cancer investigators in New York and Australia to determine the structures of protein molecules that bind together to initiate two-way signaling between human cells.

The study, published in today’s issue of Nature, was built upon an earlier groundbreaking discovery by Dr. Mark Henkemeyer, assistant professor in UT Southwestern’s Center for Developmental Biology, and his associate Chad Cowan, a doctoral candidate in the UT Southwestern Graduate School of Biomedical Sciences who won the school’s top student award for research last year.

They described the molecular details of how neurons sense their environment as they project their fibers to distant locations in the body. This finding was reported in a September issue of Nature.

Now, a team from the Memorial Sloan-Kettering Cancer Center in New York, in collaboration with Henkemeyer, has derived three-dimensional picture of the molecules that mediate this novel cell-to-cell communication system. The molecules are called Eph and Ephrin proteins.

“The genome DNA sequencing project tells us what the amino acid sequence of the proteins are, but it doesn’t give us the structure or shape that the proteins take after they have folded up as they’re activated to do their jobs,” Henkemeyer said. “Now we can visualize at atomic-level resolution how these important molecules interact to initiate bidirectional signaling between cells.

“The cancer investigators are interested in Ephs and Ephrins because these same proteins also play similar communication roles in many other moving, remodeling cells, including vascular endothelial cells and, potentially, migrating metastatic cancer cells. These bidirectional messages or signals appear to help control how cells move and interact as the nervous system and other organs develop in the embryo or perhaps as cancer cells move throughout the body.”

To describe the structures of the Eph and Ephrin interactions, the researchers first purified both molecules in their interactive form and then grew crystals of the proteins, Henkemeyer said. Then they subjected the crystals to X-ray diffraction analysis to determine their shape. The analysis of the results yielded a picture of how specific domains of the proteins can interact to then send reciprocal messages into their resident cells.

“If further research confirms that metastatic cancer cells also move throughout the body by using the same biochemical pathways, then it may be possible to use these three-dimensional structures to formulate compounds to inhibit, interrupt or otherwise alter the Eph-Ephrin signals and, thereby, effect new cancer therapies,” said Henkemeyer. “The groundwork has already been laid in that direction.”

For neuronal cells, Henkemeyer said, the goal would likely be to stimulate or inhibit the Eph-Ephrin pathways and perhaps accelerate nerve regrowth and regeneration as therapies for brain or spinal-cord injuries.

Drs. Dimitar Nikolov and Juha-Pekka Himanen were the structural study’s lead researchers in cellular biochemistry and biophysics at Memorial Sloan-Kettering. Also participating were scientists at the Brookhaven National Laboratory in New York and the Ludwig Institute for Cancer Research at the Royal Melbourne Hospital in Australia.

The protein structural study was supported by the National Institutes of Health, the New York Council Speaker’s Fund for Biomedical Research and the Welch Foundation.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Scientists Describe Structures Of Protein Molecules That Enable Two-Way Signaling Between Cells." ScienceDaily. ScienceDaily, 20 December 2001. <www.sciencedaily.com/releases/2001/12/011220081429.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2001, December 20). Scientists Describe Structures Of Protein Molecules That Enable Two-Way Signaling Between Cells. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2001/12/011220081429.htm
University Of Texas Southwestern Medical Center At Dallas. "Scientists Describe Structures Of Protein Molecules That Enable Two-Way Signaling Between Cells." ScienceDaily. www.sciencedaily.com/releases/2001/12/011220081429.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins