Featured Research

from universities, journals, and other organizations

Scientists Develop Protein Nanoarrays For Biological Detection

Date:
February 11, 2002
Source:
Northwestern University
Summary:
Scientists at Northwestern University have developed a new detection technology on the nanometer scale that could lead to the next generation of proteomic arrays and new methods for diagnosing infectious diseases.

EVANSTON, Ill. — Scientists at Northwestern University have developed a new detection technology on the nanometer scale that could lead to the next generation of proteomic arrays and new methods for diagnosing infectious diseases.

Once optimized, the new nanotechnology holds promise for biological detectors that can yield more information more accurately in a shorter period of time. Such devices ultimately could be used in the doctor’s office to rapidly screen for a wide range of pathogenic diseases or in the field to detect biological weapons such as anthrax and smallpox.

A report on the protein nanoarrays was published online Feb. 7 by the journal Science at the Science Express Web site (http://www.sciencexpress.org).

Genetic and proteomic screening with so-called gene-chips and proteomic arrays are allowing researchers to peer into the genetic code of individuals and develop leads for important therapeutic agents in the pharmaceutical industry. Current technology uses arrays of either proteins or DNA on the micrometer level as screening tools for analyzing DNA, protein-protein interactions and cell biology and for drug testing. Miniaturizing these arrays could dramatically improve their capabilities.

The researchers utilize a process invented at Northwestern called Dip-Pen Nanolithography to make arrays of proteins with features more than 1,000 times smaller than those used in conventional arrays. This leads to nanoarrays with more than 1 million times the density of current commercial microarrays.

Led by Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, the research team combined expertise with Professor Milan Mrksich of the University of Chicago and his group and also showed that the novel arrays could be used to study important biological processes, such as cell adhesion. This involves discovering and then writing a pattern of proteins that attracts a particular molecule.

"Our technology opens up many new possibilities for detection and understanding the interactions of biomolecules with each other and synthetic agents," said Mirkin. "We have developed a simple way of recognizing complex materials. Once the pattern of protein dots that matches a particular biomolecule or structure is known, we can build a detector for that biomolecule. This means that instead of testing for anthrax DNA, which requires a lot of processing, we might be able to test for the anthrax spore itself."

"Creating patterns on a sub-micrometer level is important," added Mirkin, also George B. Rathmann Professor of Chemistry. "More detailed questions can be asked and answered when working on the nanometer scale. This is a fundamental advance in biorecognition."

Mirkin’s method of Dip-Pen Nanolithography allowed the researchers to use an atomic force microscope tip as a nano-pen to write out a tiny protein array on a gold surface. With an array of protein "dots" as small as 100 nanometers in diameter, the gold surface in between the dots was processed to prevent it from absorbing target proteins and disturbing the readings. (A nanometer is one-billionth of a meter.) When an array on a chip was exposed to protein targets in solution, the protein on the substrate (16-mercaptohexadecanoic acid or MHA) bound its complementary proteins (lysozyme and rabbit immunoglobin). The atomic force microscope then read the chip and recorded a match where a change in height was detected.

Other authors on the paper are Ki-Bum Lee (lead author) and So-Jung Park, both of Northwestern. The research was supported by the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency (DARPA), the National Science Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Scientists Develop Protein Nanoarrays For Biological Detection." ScienceDaily. ScienceDaily, 11 February 2002. <www.sciencedaily.com/releases/2002/02/020208075550.htm>.
Northwestern University. (2002, February 11). Scientists Develop Protein Nanoarrays For Biological Detection. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2002/02/020208075550.htm
Northwestern University. "Scientists Develop Protein Nanoarrays For Biological Detection." ScienceDaily. www.sciencedaily.com/releases/2002/02/020208075550.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins