Featured Research

from universities, journals, and other organizations

Protein Mix-Up Tied To Suppressed Immune Response Early In HIV Infection

Date:
February 25, 2002
Source:
University Of North Carolina School Of Medicine
Summary:
New research that arose from a serendipitous laboratory observation could resolve a scientific mystery, the fact that some people become less able to fight HIV infection despite having a high number of "killer" immune cells circulating in the blood.

CHAPEL HILL - New research that arose from a serendipitous laboratory observation could resolve a scientific mystery, the fact that some people become less able to fight HIV infection despite having a high number of "killer" immune cells circulating in the blood.

Related Articles


A report of the study currently appears in the Internet edition of the March 1 issue of the Journal of Immunology (see below for URL). The findings offer new complexity to HIV's impact on the immune system and, if confirmed, could also shape vaccine design for HIV prevention and treatment.

"One of the questions that we've not understood for a long time is why some people with HIV become immunocompromised before you would think they should; that is, while they still have significant numbers of CD4 and CD8 T cells," said senior study author Dr. Jeffrey A. Frelinger, Kenan Professor and chair of microbiology and immunology at the University of North Carolina at Chapel Hill School of Medicine.

CD4 Helper T-Cells are white blood cells that orchestrate the cellular immune response, providing help to other immune system cells. CD8 T cells are a type of cytotoxic T-lymphocyte (CTL) that kill cells in the body that have been infected by a foreign organism. These white cells recognize surface markers on other cells in the body that label those cells for destruction. In this way, CTLs help keep virus-infected cells in check.

But early in the disease process in some HIV-infected individuals, CD8 T cells apparently become unresponsive to HIV surface molecules, essentially not attacking them, well before any profound loss of CD4 Helper cells.

"It's like having many soldiers ready to fight for you, but the soldiers are so weak they cannot fight. They are not doing their work because something is stopping them," said Dr. Mohammed L. Garba, a postdoctoral researcher in Frelinger's laboratory and the study's principal author. That "something" Garba initially glimpsed while preparing an assay of human blood. He noticed that the CTLs of some people who were HIV-positive "made a really nice [immune] response" to vaccinia virus, the smallpox vaccine. In the same cell culture, when Garba introduced HIV protein molecules, the vaccinia-specific response was suppressed.

After further experimentation, Garba found that the CTLs of people who showed a suppressed vaccinia response do indeed make a response to HIV. "But instead of making molecules we know to be protective in viral infections -- molecules like interferon-gamma -- they make a molecule called TGF-beta, which is immunosuppressive," Frelinger said.

Moreover, the TGF-beta molecule is broadly suppressive. It can suppress not only HIV-specific immune responses but other responses as well, including influenza and other "opportunistic" infections that often are a threat to people with HIV.

The new study tested blood samples donated from 40 HIV patients at UNC and 20 samples from donors at low risk for HIV. All but one had been previously exposed to vaccinia due to small pox vaccination.

About 25 percent of HIV donors produced TGF-beta in response to stimulation with HIV proteins or peptides. This production of TGF-beta "was sufficient to significantly reduce the interferon-gamma response of CD8 cells to both HIV and vaccinia proteins," the report stated. However, introduction of antibodies to TGF-beta reversed the suppression.

According to the researchers, TGF-beta appears to be the dominant response among people whose immune cells produce both TGF-beta and interferon-gamma. Essentially, TGF-beta puts the brakes on an ongoing positive immune response to viral antigens, including HIV surface proteins.

"Certainly, the issue of TGF-beta in the immune response is important, particularly when designing immunotherapy for an individual," Frelinger said. "Our study has scientific value in terms of understanding HIV pathogenesis in that it provides an excellent explanation of how a positive immune response some people make is actively broadly immunosuppressive."

"The findings also provide a target for potential therapies that would interfere with this [TGF-beta] response, which would certainly be helpful for some individuals."

Along with Garba and Frelinger, UNC co-authors include Drs. Christopher D. Pilcher and Joseph Eron of the Department of Medicine and Dr. Andrea L. Bingham, School of Pharmacy.

For Internet access to the journal report, go to: http://www.jimmunol.org/content/vol168/issue5/index.shtml


Story Source:

The above story is based on materials provided by University Of North Carolina School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina School Of Medicine. "Protein Mix-Up Tied To Suppressed Immune Response Early In HIV Infection." ScienceDaily. ScienceDaily, 25 February 2002. <www.sciencedaily.com/releases/2002/02/020225084427.htm>.
University Of North Carolina School Of Medicine. (2002, February 25). Protein Mix-Up Tied To Suppressed Immune Response Early In HIV Infection. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2002/02/020225084427.htm
University Of North Carolina School Of Medicine. "Protein Mix-Up Tied To Suppressed Immune Response Early In HIV Infection." ScienceDaily. www.sciencedaily.com/releases/2002/02/020225084427.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins