Featured Research

from universities, journals, and other organizations

Scientists Find They Can Tap Gene-Silencing Process To Reveal Parts Of Genetic Machinery

Date:
April 5, 2002
Source:
University Of North Carolina At Chapel Hill
Summary:
In 1998, researchers discovered to their surprise a long-hidden but common form of gene silencing called “RNA interference.” In that key biological process, double-stranded pieces of the genetic information known as RNA become potent brakes on gene activity. Now, scientists at the University of North Carolina at Chapel Hill have discovered that RNAi itself can be exploited to rapidly identify parts of the machinery that make RNAi work.

CHAPEL HILL - In 1998, researchers discovered to their surprise a long-hidden but common form of gene silencing called “RNA interference.” In that key biological process, double-stranded pieces of the genetic information known as RNA become potent brakes on gene activity.

RNA interference -- RNAi for short -- works in animal cells by degrading the messenger RNAs that serve as the mobile blueprints produced by genes.

Now, scientists at the University of North Carolina at Chapel Hill have discovered that RNAi itself can be exploited to rapidly identify parts of the machinery that make RNAi work. With further research, the finding might have important implications for treating cancer and other serious illnesses, they say.

“We stumbled upon the finding,” said Dr. Robert P. Goldstein, assistant professor of biology. “A graduate student in my lab, Nate Dudley, found that what was considered an annoying peculiarity of RNAi became, in the end, a really useful way to figure out how it works.”

A report on the discovery appeared online in the March 19 early edition of the Proceedings of the National Academy of Sciences and will appear in the April 2 print issue. Dudley, Goldstein and biology postdoctoral fellow Jean-Claude Labbe carried out the research and wrote the paper.

The team conducted its experiments in one-millimeter-long worms that live in soil and eat bacteria. Scientists call the critter Caenorhabditis elegans.

“The coolest thing about C. elegans is that it has all the major cell types that we have -- muscle, nerve, gut, skin and so on -- yet the whole worm contains only 959 cells,” said Goldstein, a member of the Lineberger Comprehensive Cancer Center at UNC’s medical school. “C. elegans is therefore one of the simplest organisms available for studying how genes function during development. Human beings, on the other hand, have trillions of cells.”

Many experiments, which would take forever or be impossible or unethical in humans can be done rapidly in C. elegans, he said. Eventually, scientists will determine if what they learn from the worm model applies, as they expect, to mammals and humans as well.

“The worm is optically clear so that we can see everything going on inside, and it goes through a complete generation in only three days,” Goldstein said. “It was the first animal in which the complete genome was sequenced, and it is used by a several hundred labs around the world to study an incredibly diverse array of biological phenomena, including aging, cancer and cell death.”

Injecting pieces of laboratory-produced, double-stranded RNA into the worms, the researchers could “silence” just about any gene they wanted depending on the composition of the RNA they chose, he said.

“What we found was that if we silenced the activity of genes that are part of the RNA interference mechanism, we could turn off the RNA interference,” he said. “Since only a few pieces of the RNA interference machinery are known right now, we can use this method to identify more pieces of the mechanism.”

Once that process is mostly or entirely understood, scientists should be able to turn off gene expression at will, including genes responsible for cancer and various genetic disorders.


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Scientists Find They Can Tap Gene-Silencing Process To Reveal Parts Of Genetic Machinery." ScienceDaily. ScienceDaily, 5 April 2002. <www.sciencedaily.com/releases/2002/04/020402073127.htm>.
University Of North Carolina At Chapel Hill. (2002, April 5). Scientists Find They Can Tap Gene-Silencing Process To Reveal Parts Of Genetic Machinery. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2002/04/020402073127.htm
University Of North Carolina At Chapel Hill. "Scientists Find They Can Tap Gene-Silencing Process To Reveal Parts Of Genetic Machinery." ScienceDaily. www.sciencedaily.com/releases/2002/04/020402073127.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins