Featured Research

from universities, journals, and other organizations

Researchers Identify Compounds That Might Help In Spinal Cord Repair

Date:
April 10, 2002
Source:
American Chemical Society
Summary:
Researchers at Johns Hopkins School of Medicine have identified a set of compounds that appear to overcome an important barrier to regenerating damaged nerves. Their findings could lead to new treatments for spinal cord injury, multiple sclerosis and other neurological conditions.

ORLANDO, Fla., April 8 — Researchers at Johns Hopkins School of Medicine have identified a set of compounds that appear to overcome an important barrier to regenerating damaged nerves. Their findings could lead to new treatments for spinal cord injury, multiple sclerosis and other neurological conditions.

Targeting a newly discovered mechanism that inhibits the growth of damaged nerves, the researchers found that these compounds caused dissected rat nerves to regenerate under controlled laboratory conditions. Findings were described today at the 223rd national meeting of the American Chemical Society, the world’s largest scientific society.

The results add to a growing body of evidence that repairing spinal cord injury — once thought impossible — may one day occur, says Ronald L. Schnaar, Ph.D., a professor in the Department of Pharmacology at the university, located in Baltimore, Md., and lead investigator in the study.

“We are getting at the mechanisms that underlie one of the problems in nerve regrowth, but there are others,” says Schnaar. “There’s no one answer. There is no magic formula for spinal cord repair.” Animal studies testing the nerve-regenerating chemicals began recently, he adds.

Nerves consist of axons, long extensions that carry electrical signals. Axons are wrapped by an insulation called myelin, which is essential for normal electrical conduction. When nerve cells are damaged, as in spinal cord injury, myelin sends signals that stop the axons from regenerating.

Schnaar and his colleagues found that molecules called “MAG” (myelin associated glycoprotein) on the myelin send inhibitory signals to complementary molecules called gangliosides on the surface of nerve cell axons. While the MAG-ganglioside interactions are normally stable, MAG binds to and clusters the gangliosides together during nerve injury. It is this clustering of the gangliosides on the nerve cell surface that is thought to inhibit nerve growth, they believe.

While MAG inhibition has been known for some time, Schnaar’s lab is the first to identify gangliosides as the nerve cell targets for this inhibition. In the current study, the researchers focused on ways to unlock this inhibition in order to restore nerve growth.

They identified four chemicals — including antibodies and enzymes known to interfere with myelin-axon interactions — that induced nerve regeneration in rat brain cells under controlled laboratory conditions, according to Schnaar. He is now testing the nerve-regenerating factors in animal models with damaged nerves to determine if these therapies can work in living systems. Preliminary results are not yet available, he says.

“In the [human] body, nerve damage is much more complicated than our laboratory conditions, and this new knowledge, by itself, is unlikely to solve the problem of nerve regeneration,” cautions Schnaar. “However, it is our hope that our discoveries, along with other new discoveries on the molecular basis for nerve regeneration, will help in the search for therapies to improve functional recovery after nervous system injury or disease.”

About 11,000 new cases of spinal cord injury occur in this country each year. While there is no cure for paralysis, there are a number of treatment options for nervous system disease and injury, including drugs, cell transplants, artificial nerves and rehabilitation therapy.

The National Institutes of Health, the National Multiple Sclerosis Society and the Stollof Family Fund provided funding for this study.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Researchers Identify Compounds That Might Help In Spinal Cord Repair." ScienceDaily. ScienceDaily, 10 April 2002. <www.sciencedaily.com/releases/2002/04/020410080250.htm>.
American Chemical Society. (2002, April 10). Researchers Identify Compounds That Might Help In Spinal Cord Repair. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2002/04/020410080250.htm
American Chemical Society. "Researchers Identify Compounds That Might Help In Spinal Cord Repair." ScienceDaily. www.sciencedaily.com/releases/2002/04/020410080250.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins