Featured Research

from universities, journals, and other organizations

HIV Selectively Suppresses Anti-HIV Defense Cells

Date:
May 3, 2002
Source:
NIH/National Institute Of Allergy And Infectious Disease
Summary:
A new study confirms what HIV researchers until now only suspected: HIV selectively disables the immune system's response against the virus by disproportionately infecting the very cells designed to fight it. In fact, CD4+ T cells programmed to fight HIV are two to five times more likely to be infected with HIV than CD4+T cells programmed to take on other pathogens.

A new study confirms what HIV researchers until now only suspected: HIV selectively disables the immune system's response against the virus by disproportionately infecting the very cells designed to fight it. In fact, CD4+ T cells programmed to fight HIV are two to five times more likely to be infected with HIV than CD4+T cells programmed to take on other pathogens.

Related Articles


"This finding not only helps us better understand how the virus causes disease, it should also aid in developing effective HIV vaccines," comments Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID). The study, conducted by scientists at NIAID's Vaccine Research Center (VRC) and their colleagues, will appear in the May 2 issue of Nature.

CD4+ T cells, also called "helper" T cells, are HIV's primary target. These cells help direct the immune system's response to various pathogens. HIV undermines the body's ability to protect against disease by depleting these cells.

From 12 HIV-positive individuals, the researchers isolated three subgroups of helper T cells: HIV-fighting cells, cytomegalovirus-fighting cells, and a "mixed" group. The scientists then examined these cells for evidence of HIV infection. In each case, HIV infected a much greater percentage of HIV-specific cells than cells in the other two groups. The cytomegalovirus-specific and mixed group showed no significant differences in HIV infection rates.

"For years we have known that the immune system does not produce a good CD4+ T cell response against HIV, and we have postulated that this might be because HIV preferentially infects HIV-specific CD4+ cells," says Richard Koup, M.D., senior study author and a senior investigator at the VRC. "This study is the first to show that this phenomenon actually happens in the body." Dr. Koup and his team tested two possible mechanisms underlying this phenomenon and found evidence for both.

The first occurs when the immune system initially confronts HIV. At this stage, HIV-specific CD4+ T cells are immature, or "nave." These young helper cells rapidly multiply into a mature HIV-fighting army, but they are exceptionally vulnerable to viral infection during this process. So the seeds of this HIV-fighting army of helper T cells might be infected from the start, Dr. Koup says, ensuring a perpetual high rate of infection among this group.

The researchers found laboratory evidence for this scenario. They exposed both nave and mature helper cells to HIV, then stimulated the nave cells to multiply through several rounds of cell division. The nave cells in their transitional state were infected at a much higher rate than the mature cells, Dr. Koup notes.

However, HIV infects mature as well as nave helper T cells. Another explanation for the high rates of infection among CD4+ T cells might be that the mature ones rush to the front lines of the body's battle against HIV and are therefore exposed to more of the virus than are cells that fight other pathogens.

To test this hypothesis, the researchers examined the cells of four HIV-positive individuals undergoing structured treatment interruption of their antiretroviral therapy. Because these individuals were past the early stage of infection, all their nave helper T cells had matured. When these patients went off antiretroviral drugs, their viral loads increased significantly, and their HIV-specific helper T cells tried to fight off the virus. Analysis showed that these cells became infected with HIV at a significantly higher rate than other helper T cells.

"This experiment shows that HIV continuously and preferentially infects mature HIV-specific helper T cells as they try to fight off the virus," say Dr. Koup. "In one patient, over half of all his infected CD4+ T cells were HIV-specific."

This finding means that clinicians should consider the possible negative consequences of structured therapy interruptions that allow virus levels to rebound, says lead study author Daniel Douek, M.D., Ph.D., chief of the VRC's Human Immunology Section. "Although short courses of structured intermittent therapy do not result in increased levels of HIV," he says, "longer regimens that permit the viral load to increase may result in long-term damage of the immune system's ability to fight off HIV."

The study also suggests ways to design a more effective HIV vaccine, Dr. Douek adds. Such a vaccine must induce a strong T-cell response against HIV. But because HIV-specific CD4+ T cells are especially vulnerable to HIV, an ideal vaccine should also create a broad and powerful CD8+ T cell response and antibodies against HIV, Douek explains. HIV does not infect CD8+ T cells, also known as cytotoxic or "killer" cells.

"A robust CD8+ response should be an important part of an HIV vaccine, and this is the strategy we pursue at the Vaccine Research Center," Dr. Douek says. "We are working on DNA 'prime-boost' vaccines. These two-part vaccines first prime the immune system with a shot of HIV DNA, then boost the immune response with a harmless viral vector that contains additional HIV genes. The boost enhances the CD8+ response."

NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

Reference:D Douek et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417(6884):95-98 (2002).


Story Source:

The above story is based on materials provided by NIH/National Institute Of Allergy And Infectious Disease. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Allergy And Infectious Disease. "HIV Selectively Suppresses Anti-HIV Defense Cells." ScienceDaily. ScienceDaily, 3 May 2002. <www.sciencedaily.com/releases/2002/05/020503075625.htm>.
NIH/National Institute Of Allergy And Infectious Disease. (2002, May 3). HIV Selectively Suppresses Anti-HIV Defense Cells. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2002/05/020503075625.htm
NIH/National Institute Of Allergy And Infectious Disease. "HIV Selectively Suppresses Anti-HIV Defense Cells." ScienceDaily. www.sciencedaily.com/releases/2002/05/020503075625.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins