Featured Research

from universities, journals, and other organizations

Gene Therapy Reverses Muscular Dystrophy In Animal Model

Date:
September 17, 2002
Source:
University Of Washington
Summary:
Researchers have proven that gene therapy can reverse the pathological features of muscular dystrophy in an animal model. Before, gene therapy had only been able to prevent further muscle-wasting in mice. "We expect to build on these results in the continuing search for a way to treat a horrible disease. Our results indicate that gene therapy could be used not only to halt or prevent this disease, but also to restore normal muscle function in older patients," says Dr. Jeffrey S. Chamberlain, professor of neurology at the University of Washington School of Medicine in Seattle.

Researchers have proven that gene therapy can reverse the pathological features of muscular dystrophy in an animal model. Before, gene therapy had only been able to prevent further muscle-wasting in mice. "We expect to build on these results in the continuing search for a way to treat a horrible disease. Our results indicate that gene therapy could be used not only to halt or prevent this disease, but also to restore normal muscle function in older patients," says Dr. Jeffrey S. Chamberlain, professor of neurology at the University of Washington School of Medicine in Seattle.

Related Articles


Chamberlain is the senior author of the paper describing the results, which will be published in the Proceedings of the National Academy of Sciences online Early Edition the week of Sept. 16 to 20.

Duchenne muscular dystrophy is an X-linked genetic disorder that strikes one of every 3,500 newborn boys. The genetic disorder means the body does not produce the dystrophin protein, which is necessary for the structural support of muscle. Without this protein, muscles weaken to the point where the victim cannot survive. There is no specific treatment against any form of muscular dystrophy, except for supportive measures, such as physical therapy, assistive technology and corrective surgery. Boys and men with the disorder usually die from respiratory failure before they can turn 25.

Researchers have been looking for many years for ways to introduce the dystrophin gene into the body of patients to replace the missing gene. In doing so, researchers have developed a strain of mice who lack the dystrophin gene. In the past, researchers have been able to insert the gene into newborn mice via adenoviral vectors. But those vectors have many viral properties, and results have been limited because adult mice and mice that have begun to develop symptoms of the disease developed a sharp host immune response that eliminated the therapeutic gene.

The results have also been limited because the dystrophin gene is large, and until now, there has not been a good way to deliver the entire gene and have it remain in the muscles of the mice. Last spring, Chamberlain and colleagues reported they were able to deliver a "micro" version of the dystrophin gene. Even the micro version appeared able to reverse the muscle-wasting process, but it was not as effective as the full gene.

However, in the Sept. 16 paper, Chamberlain and colleagues describe how they developed A stripped-down vectors that did not raise a host immune response and which delivered the full-length, muscle-specific dystrophin gene. They showed that the full gene could be delivered to muscles of young and old mice, even well after severe muscle damage had developed. Also, they showed that normal muscle function was restored to a level that directly correlated with the amount of the gene that was delivered.

"These results are extremely encouraging. We have shown that replacing the dystrophin gene will correct this disease, even in older animals. In future research, we hope to develop better methods to deliver the gene to all the muscles of the body, as currently we are limited to treating relatively small muscles. We believe these results also support the need to move forward with human clinical trials to assess the safety of these methods in patients," Chamberlain said.

The research was funded by grants from the National Institutes of Health, the Muscular Dystrophy Association and the Apex Foundation, a family foundation established by Bruce and Jolene McCaw. Other authors of the paper include Christiana DelloRusso, the lead author, of the UW Departments of Physiology and Neurology; Jeannine M. Scott, Dennis Hartigan-O'Connor and Robert W. Crawford of the Department of Neurology; former UW researchers Giovanni Salvatori, Catherine Barjot and Ann S. Robinson, and Susan V. Brooks of the University of Michigan.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Gene Therapy Reverses Muscular Dystrophy In Animal Model." ScienceDaily. ScienceDaily, 17 September 2002. <www.sciencedaily.com/releases/2002/09/020917065447.htm>.
University Of Washington. (2002, September 17). Gene Therapy Reverses Muscular Dystrophy In Animal Model. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2002/09/020917065447.htm
University Of Washington. "Gene Therapy Reverses Muscular Dystrophy In Animal Model." ScienceDaily. www.sciencedaily.com/releases/2002/09/020917065447.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins