Featured Research

from universities, journals, and other organizations

Algorithm Predicts Interactions Between Proteins Whose Structures Are Unsolved

Date:
November 13, 2002
Source:
University At Buffalo
Summary:
A promising new algorithm that can predict interactions between proteins whose structures are unsolved has been developed by Jeffrey Skolnick, Ph.D., University at Buffalo Distinguished Professor and director of the Center of Excellence in Bioinformatics.

BUFFALO, N.Y. -- A promising new algorithm that can predict interactions between proteins whose structures are unsolved has been developed by Jeffrey Skolnick, Ph.D., University at Buffalo Distinguished Professor and director of the Center of Excellence in Bioinformatics.

Related Articles


The research is published in today's (Nov. 15, 2002) issue of Proteins.

Called MULTIPROSPECTOR, the new algorithm takes protein interaction prediction to a new level because it works on proteins on which little structural information exists, providing three-dimensional models of the protein-protein complex and identifying the amino acid residues that interact.

According to Skolnick, the new method takes the entire field of structural genomics an important step closer to the ultimate goal of using detailed information about genes and the proteins they encode to design more effective pharmaceuticals.

"The overall goal," he said, "is to develop personalized medicine, which is based on understanding how a drug affects you versus how it affects me."

He noted: "With this paper, we are moving toward an understanding of how the whole system works, what's known as systems biology, which is the key revolution in the post-genomic era," he explained.

According to Skolnick, complexes of interacting proteins provide exciting and novel targets for potential new drugs.

"Right now, very few drugs exist that inhibit protein-protein interactions; most work against single molecules," he said.

But, he noted, the Protein Data Bank, the international "public library" of solved protein structures from which scientists draw data, contains not just isolated molecules, but in many instances solved compounds of two or more proteins interacting.

"Lots of cellular signals are mediated by these protein-protein interactions," he said, "and we want to know exactly who's interacting with whom. Often, the function of one protein can be deduced by studying the proteins with which it interacts."

Skolnick conjectured that perhaps there are millions of these interactions, a seemingly intractable problem.

But, he said, the process is greatly accelerated if you have a computational method that helps pinpoint the sites on the interacting proteins that will help scientists discover their role in biochemical pathways.

"That's what our method aims to do," he explained. "So, using our supercomputer, we can start to see how the path fits together, how this enzyme interacts with that small molecule or functions in a cascade of cellular processes."

The paper describes how MULTIPROSPECTOR was able to correctly predict protein-protein interactions between many thousands of proteins in brewer's yeast, a model organism in structural genomics.

Skolnick and his colleagues took what is known as a threading approach to the problem, in which an amino acid sequence is "threaded" through a library of protein structures that already have been solved.

But they take the threading process a step further. After finding matches for an amino acid sequence, the process goes through a second threading phase for both proteins, but this time a value is assigned for the interfacial energy, the surface energy between the proteins, revealing the stability of the interaction and thus, the likelihood that these are the structures that are interacting.

"We have built a sensitive interfacial potential that appears to often work at assessing interaction stability," said Skolnick.

He explained that predicting interactions between proteins provides scientists with an additional and important tool in reaching the point where genotype (what's happening genetically) can be linked to phenotype (what's happening clinically, i.e. what is the physiological manifestation of specific protein structures in a particular cellular pathway).

The research was conducted while Skolnick was at the Danforth Plant Science Center in St. Louis. The paper is co-authored by Long Lu, Ph.D., and Hui Lu, Ph.D., both of Danforth.


Story Source:

The above story is based on materials provided by University At Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University At Buffalo. "Algorithm Predicts Interactions Between Proteins Whose Structures Are Unsolved." ScienceDaily. ScienceDaily, 13 November 2002. <www.sciencedaily.com/releases/2002/11/021113071213.htm>.
University At Buffalo. (2002, November 13). Algorithm Predicts Interactions Between Proteins Whose Structures Are Unsolved. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2002/11/021113071213.htm
University At Buffalo. "Algorithm Predicts Interactions Between Proteins Whose Structures Are Unsolved." ScienceDaily. www.sciencedaily.com/releases/2002/11/021113071213.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins