Featured Research

from universities, journals, and other organizations

Better Warheads Through Plastics

Date:
December 3, 2002
Source:
Office Of Naval Research
Summary:
The Office of Naval Research's Reactive Materials Enhanced Warhead Program seeks to demonstrate missile warheads that achieve visible catastrophic structural defeat of cruise missiles and manned aircraft. These new warheads enhance the kinetic energy of inert fragments with chemical energy released when reactive fragments hit the target.

Shooting down enemy air threats--whether they're ballistic missiles, cruise missiles, or aircraft--is a tactical problem that leaves little room for error. The targets move fast and must be verifiably, catastrophically, destroyed. An incoming missile hit and broken into pieces by an air defense missile can be as dangerous as one that lands intact. The Iraqi Scud missile that killed so many American troops at their Saudi base during the 1991 Gulf War is sad evidence of that risk--it had apparently been hit by a Patriot missile on its way down, but its warhead functioned on impact nonetheless. So the Navy's goal in improving the effectiveness of its air defense warheads is to enable them to inflict enough damage on an incoming missile to destroy it at a safe distance.

Related Articles


The Office of Naval Research is working toward this goal. ONR's Reactive Materials Enhanced Warhead Program seeks to demonstrate missile warheads that achieve visible catastrophic structural defeat of cruise missiles and manned aircraft. These new warheads enhance the kinetic energy of inert fragments with chemical energy released when reactive fragments hit the target. (Kinetic energy is simply the energy a body has by virtue of its motion--a linebacker brings down a running back through application of his kinetic energy; a thrown rock breaks a window by transferring its kinetic energy to the glass. Chemical energy is released in the form of heat and pressure, as when something burns rapidly--a gas main explosion or the detonation of stick of dynamite are good examples of the release of chemical energy.) The Reactive Materials Warhead combines both effects to increase the odds of destroying the target.

The new warhead uses a carefully designed chemical reaction to release heat and overpressure. These add to the destructive effect of the warhead fragments' kinetic energy as they strike the target. The fragments are composed of an advanced composite material made of powdered metal embedded in a plastic matrix that survives the explosive launch typical of warhead fragmentation. It promises potential lethality improvements of up to 500%.

This new reactive composite material was recently incorporated into a prototype warhead and used in a live-fire explosive static arena test against real and threat-representative targets. The demonstration showed that the new type of warhead has twice the lethal radius of its predecessors and improved structural target damage. The test results and engineering tool sets developed from this program are now being used to prepare the Reactive Material Enhanced Warhead for transition into Navy missile programs that include the STANDARD Missile, the High-speed Anti-Radiation Missile (HARM), the Advanced Medium Range Air-to-Air Missile (AMRAAM), the Sidewinder, and the Rolling Airframe Missile (RAM).


Story Source:

The above story is based on materials provided by Office Of Naval Research. Note: Materials may be edited for content and length.


Cite This Page:

Office Of Naval Research. "Better Warheads Through Plastics." ScienceDaily. ScienceDaily, 3 December 2002. <www.sciencedaily.com/releases/2002/12/021203074910.htm>.
Office Of Naval Research. (2002, December 3). Better Warheads Through Plastics. ScienceDaily. Retrieved April 17, 2015 from www.sciencedaily.com/releases/2002/12/021203074910.htm
Office Of Naval Research. "Better Warheads Through Plastics." ScienceDaily. www.sciencedaily.com/releases/2002/12/021203074910.htm (accessed April 17, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, April 17, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com
Tackling Congestion in the World's Worst Traffic City

Tackling Congestion in the World's Worst Traffic City

Reuters - News Video Online (Apr. 16, 2015) New transportation system and regulations aim to resolve gridlock in Jakarta, which has been named the city with the world&apos;s worst traffic. Angie Teo reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins