Featured Research

from universities, journals, and other organizations

Laser-pulse Technique Could Aid Drug Design

Date:
February 17, 2003
Source:
Cornell University
Summary:
Discovery of drugs to treat generalized epilepsy with febrile seizures (GEFS), a genetic disorder that affects 4 million Americans, could now advance more rapidly, predicts a Cornell University biochemist.

DENVER -- Discovery of drugs to treat generalized epilepsy with febrile seizures (GEFS), a genetic disorder that affects 4 million Americans, could now advance more rapidly, predicts a Cornell University biochemist.

George P. Hess, professor of molecular biology and genetics at Cornell, in Ithaca, N.Y., invented a laser-based technique to study signal transmission between cells of the nervous system. The same technique, called laser-pulse photolysis, already has identified a cocainelike analog compound to block the effects of cocaine poisoning on the nervous system, he says.

Hess discusses his laser technique, which could enable drug design and testing for a variety of neurological disorders, in a press briefing scheduled for Saturday, Feb. 15, at 1 p.m. Mountain Time in Room C 110-112 of the Colorado Convention Center, Denver. Later, at the American Association for the Advancement of Science (AAAS) annual meeting, Hess will speak in a Feb. 16 session titled "Shining Light on Signal Transmission Between Cells of the Nervous System."

"Mechanism-based drug design can proceed more rationally, knowing the exact roles and timing of all the chemical players at the junctions between neurons and muscle cells or between neurons and other neurons," Hess says. The recent discovery of cocaine analogs, one application of the laser-pulse photolysis technique, will be reported in the scientific literature, Hess says, adding: "These compounds are not ready for clinical use, but they do provide a lead for pharmaceutical development."

Laser-pulse photolysis allows neuroscientists to look at entire ensembles of molecules -- not just single channels or single molecules -- during split-second chemical reactions that relay electrical signals through the nervous system, Hess explains. "These reactions can be over and done in 0.3 millisecond. To observe them in detail, we need to equilibrate [balance] the receptor with the neurotransmitter in much shorter time frames," he says. One way to beat the clock and test the Effects of a potential therapeutic agent is to present the compound as a "caged neurotransmitter," a specially constructed molecule that has no effect on receptor proteins so it can be mixed with a cell without triggering reactions.

Once the caged neurotransmitter is in place, according to Hess, a single pulse of laser light can cleave the protective cage within microseconds, allowing the neurotransmitter to bind to receptors. Then, as the freshly exposed neurotransmitter opens transmembrane channels through which electrical currents flow, investigators can watch the millisecond shifts -- between open and closed states of channels -- and determine whether a drug, such as a cocaine analog, is having the desired effect.

In the case of GEFS epilepsy, a genetic mutation is believed to be responsible for a single, inappropriate amino acid in the so-called GABA receptor in brain cells. (The disorder is called febrile because, out of the approximately 5 percent of young children who experience seizures during a high fever, a small proportion with a genetic predisposition later develop epilepsy.) Using laser-pulse photolysis, Hess and his students discovered the reason for the receptor malfunction: a shift in the equilibrium from the open-channel form toward the closed-channel form. They also tested several compounds with high molecular weights that can shift the channel-opening equilibrium -- an encouraging indication that small-molecule drugs can be found to overcome mutations in the GABA receptor and halt the raging "electrical storms" that characterize epilepsy.

Also valuable would be a treatment to short-circuit the electro-chemical effects of cocaine, Hess says. "There are more than 5 million cocaine users in the United States alone, at an estimated cost to society of $37 billion annually," he notes, citing a 1999 report by the U.S. Office of National Drug Control Policy. "During the past two decades, many attempts have been made to find compounds that prevent cocaine's inhibition of proteins that are essential in brain function, but compounds that alleviate cocaine inhibition have not been identified -- until now."

The expectation is, Hess says, "that the effects of disease-causing mutations of receptors that control signal transmission between nerve cells will be better understood -- and potentially useful treatments will be identified and tested -- using this new technique."

###

Studies leading to the development of laser-pulse photolysis and tests of its applications were supported, in part, by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Laser-pulse Technique Could Aid Drug Design." ScienceDaily. ScienceDaily, 17 February 2003. <www.sciencedaily.com/releases/2003/02/030217120416.htm>.
Cornell University. (2003, February 17). Laser-pulse Technique Could Aid Drug Design. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2003/02/030217120416.htm
Cornell University. "Laser-pulse Technique Could Aid Drug Design." ScienceDaily. www.sciencedaily.com/releases/2003/02/030217120416.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins