Featured Research

from universities, journals, and other organizations

Pitt, UCSB Researchers Discover Way To Control Electron Spin With Electrical Field

Date:
March 3, 2003
Source:
University Of Pittsburgh
Summary:
The race for smaller, faster, and more powerful computers and consumer electronics took a new spin as researchers at the University of Pittsburgh and the University of California at Santa Barbara (UCSB) became the first to control electrons using electrical, rather than magnetic, fields.

PITTSBURGH -- The race for smaller, faster, and more powerful computers and consumer electronics took a new spin as researchers at the University of Pittsburgh and the University of California at Santa Barbara (UCSB) became the first to control electrons using electrical, rather than magnetic, fields.

Related Articles


In its Jan. 23 edition, Science Express, the online portal of the magazine Science, published a report on the breakthrough of Jeremy Levy and David Awschalom. Levy is an associate professor of physics and astronomy at Pitt and director of its Center for Oxide-Semiconductor Materials for Quantum Computing ( http://cosmqc.net ). Awschalom is a professor of physics and electrical and computing engineering at UCSB and director of its Center for Spintronics and Quantum Computation, part of the California NanoSystems Institute.

The breakthrough is important in that it demonstrates that spin-based technologies, or spintronics, are compatible with technologies used in today's electronics and moves the esoteric fields of spintronics and quantum computing closer to reality.

Electrons, the basic particles of electricity, are negatively charged particles that encircle the nuclei of all atoms. Electrons can move to produce electrical currents, but they also spin about their own axes, which can point either up or down. This spin creates a small magnetic field that can be affected by other magnetic fields.

Levy and Awschalom's breakthrough opens the possibility of using the spin orientation of electrons to store information, much in the same way that the open and closed states of electrical switches store information in computers and many other electronic devices.

Scientists have been able to manipulate electron and nuclear spin with magnetic fields. For example, in magnetic resonance imaging, rapidly alternating magnetic fields can control electron and nuclear spins in three dimensions. However, magnetic fields are far more difficult to generate and control on a smaller scale. Levy and Awschalom realized that if they designed a structure for which the axis of the spin could be manipulated using an applied electrical field, the spin direction itself could be changed."Most researchers using the spin-based model for spintronics and quantum computing have assumed that the behavior of spins must be controlled by magnetic fields," said Levy. "The prospect of controlling 100 million magnets each independently on the equivalent of [the size of] a chip has boggled the imagination of researchers. However, with electrical gates, we already control 100 million devices in modern computers."

Aschwalom's graduate student constructed a semiconductor of aluminum gallium arsenide and gallium arsenide, flanked by metal plates. When they applied microwave electrical signals to the plates, the researchers were able to change the spin of the electrons.

The plates used in the researchers' experiments were 50 microns wide, and the tests were done at a low temperature, but Levy and Aschwalom say it will not be difficult to design smaller chips to operate at higher temperatures.

Funding for the project is being provided by the Defense Research Project Agency.


Story Source:

The above story is based on materials provided by University Of Pittsburgh. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pittsburgh. "Pitt, UCSB Researchers Discover Way To Control Electron Spin With Electrical Field." ScienceDaily. ScienceDaily, 3 March 2003. <www.sciencedaily.com/releases/2003/03/030303074845.htm>.
University Of Pittsburgh. (2003, March 3). Pitt, UCSB Researchers Discover Way To Control Electron Spin With Electrical Field. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2003/03/030303074845.htm
University Of Pittsburgh. "Pitt, UCSB Researchers Discover Way To Control Electron Spin With Electrical Field." ScienceDaily. www.sciencedaily.com/releases/2003/03/030303074845.htm (accessed October 31, 2014).

Share This



More Computers & Math News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Protests Stall Hungary's Internet Tax

Protests Stall Hungary's Internet Tax

Reuters - Business Video Online (Oct. 31, 2014) Hungary will shelve plans to introduce a tax on internet data traffic that has generated big protests over the past week. But as Amy Pollock reports the controversial issue hasn’t gone away entirely. Video provided by Reuters
Powered by NewsLook.com
Samsung's Incredible Shrinking Smartphone Profits

Samsung's Incredible Shrinking Smartphone Profits

Reuters - Business Video Online (Oct. 30, 2014) The world's top mobile maker is under severe pressure, delivering a 60 percent drop in Q3 profit as its handset business struggles. Turning it around may not prove easy, says Reuters' Jon Gordon. Video provided by Reuters
Powered by NewsLook.com
Ban On Wearable Cameras In Movie Theaters Surprises No One

Ban On Wearable Cameras In Movie Theaters Surprises No One

Newsy (Oct. 30, 2014) The Motion Picture Association of America and the National Association of Theatre Owners now prohibit wearable cameras such as Google Glass. Video provided by Newsy
Powered by NewsLook.com
Spain's New 'Google Tax' Makes News Feeds Pay For Links

Spain's New 'Google Tax' Makes News Feeds Pay For Links

Newsy (Oct. 30, 2014) Spanish lawmakers have passed new IP rules requiring aggregators to pay for linking to news sites, following a broader trend across the E.U. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins