Featured Research

from universities, journals, and other organizations

New Advance In Fuel Cell Technology May Help Power Medical Implants

Date:
March 28, 2003
Source:
Brown University
Summary:
Two new microfluidic fuel cells developed at Brown University may help make long-running medical implants a reality. The new fuel cells offer features sought after by manufacturers to provide long-term power for medical devices such as implants that monitor glucose levels in diabetics.

Two new microfluidic fuel cells developed at Brown University may help make long-running medical implants a reality.

The new fuel cells offer features sought after by manufacturers to provide long-term power for medical devices such as implants that monitor glucose levels in diabetics.

"They present a new paradigm toward the development and manufacture of small fuel cells for medical implants," said lead scientist Tayhas Palmore, associate professor of engineering, biology and medicine. "There is a lot of basic science yet to be worked out. But if successful, this design could help rid a diabetic of the need to monitor blood glucose after each meal, and that would make for a significant advance in the treatment of diabetes."

Fuel cells currently are a hot topic because they are more efficient at converting chemical energy into work than a heat engine, they are simple in design, and they don't pollute the environment. For those reasons, fuel cells are seen as promising alternatives to the combustion engine in automobiles and batteries in portable electronics and medical implants.

A fuel cell consists of two electrodes immersed in fuel-containing fluids separated by an ion-conducting membrane. Power is produced by the fuel cell when electrons are removed from the fuel, transported via an external circuit, and combined with positive ions crossing the ion-conducting membrane and oxygen. Conventional fuel cells run on either hydrogen gas or liquid methanol but more recently, prototype fuel cells have been shown to run on more exotic fuels such as glucose or formate. In theory, fuels cell are amenable to a range of fuels.

The Brown fuel cells do not require an ion-conducting membrane or selective catalysts at the electrodes to separate the fuel-containing fluids – two thorny technological traits of fuel cell design that must be considered in the development of miniature fuel cells. Instead, the new fuel cells exploit the fact that fluids do not mix under certain conditions. "We take advantage of how fuels flow in small channels," said Palmore, "in that they don't mix, which means we can keep fuels separated without a membrane."

The Brown-developed fuel cells work in tandem to provide power under the pulsating conditions that mimic the flow of blood in the body. Until now, fuel cell makers had been stymied in their efforts to produce a membrane-less device that did not short-circuit under pulsed flow.

One of the microfluidic fuel cells fabricated at Brown features a novel branched-channel, which encloses six electrodes. This fuel cell is "most suitable for generating electrical power under conditions of pulsed-flow," said Palmore. "The design of the device makes possible the delivery of power to a chip as a result of changes in the concentration of a fuel, such as glucose," she said. "This power feedback is a necessary component in an imbedded sensor for diabetes."

Palmore discussed the new microfluidic fuel cells March 27, 2003 at the 225th national meeting of the American Chemical Society (ACS) in New Orleans. Coauthors of the work are graduate students Mark Luo, Jiangfeng Fei, and Keng Lim. Brown University, the National Science Foundation and the Office of Naval Research funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "New Advance In Fuel Cell Technology May Help Power Medical Implants." ScienceDaily. ScienceDaily, 28 March 2003. <www.sciencedaily.com/releases/2003/03/030328073035.htm>.
Brown University. (2003, March 28). New Advance In Fuel Cell Technology May Help Power Medical Implants. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2003/03/030328073035.htm
Brown University. "New Advance In Fuel Cell Technology May Help Power Medical Implants." ScienceDaily. www.sciencedaily.com/releases/2003/03/030328073035.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins