Featured Research

from universities, journals, and other organizations

The Structure Behind The Switch: USC Researchers Uncover Mechanism Of Class-switching In Antibodies

Date:
April 7, 2003
Source:
University Of Southern California
Summary:
A team of scientists from the Keck School of Medicine of USC has, for the first time, described a new, stable DNA structure in both mouse and human cells-one which differs from the standard Watson-and-Crick double helix and plays a critical role in the production of antibodies, or immunoglobulins.

April 6, 2003 -- A team of scientists from the Keck School of Medicine of USC has, for the first time, described a new, stable DNA structure in both mouse and human cells-one which differs from the standard Watson-and-Crick double helix and plays a critical role in the production of antibodies, or immunoglobulins.

Related Articles


The research will be published online in the journal Nature Immunology this week, and will appear in print in the journal's May issue.

"The way in which the five different immunoglobulin classes are created is a nearly perfect system," notes Michael Lieber, M.D., Ph.D., professor of pathology and biochemistry and the study's principal investigator. "And yet, the DNA mechanism for how a cell switches from producing one class to producing another has remained a mystery for almost 20 years."

The typical antibody molecule is shaped like the letter Y. The region at the end of each of the two short arms houses the receptors that recognize and bind with a specific foreign object, or antigen. These receptors are created via a well-described cutting-and-splicing mechanism that occurs within the nuclear DNA of B cells, which are key components of the immune system.

The long stem, or handle, of the Y determines to which immunoglobulin class an antibody belongs. It, too, is created via a B-cell nuclear cut-and-paste job, but the mechanics here are much more complicated-and until now, much less well understood.

An immunoglobulin's class is important because it determines where in the body the antibody's efforts will be concentrated. While immunoglobulin M (IgM) works mostly in the bloodstream, for instance, IgG can easily slip through a capillary's walls and cross the placenta, and IgA can make itself at home in the lungs, the digestive tract and the body's secretions (saliva, sweat, tears).

Although antibodies are needed in all areas of the body, they all begin life as IgM, explains Kefei Yu, Ph.D., the paper's first author and a research associate at the USC/Norris Comprehensive Cancer Center. In order to go where they're needed, the antibodies need to change their class-to go from being IgM to being IgG or IgA or IgE or IgD.

By undergoing this so-called class switch, Lieber explains, the body can send "the same antibody missile to different areas of the body."

The switch is made by cutting the DNA so that the code for IgM and any of the other class types that might precede the desired immunoglobulin class are abolished.

What Lieber, Yu and their colleagues have found is that, in order for such a cut to be made, the DNA that codes for the desired class must first form a stable, relatively permanent bond with the RNA strand that is transcribing it. Only when this aptly named R-loop is present can the DNA be cut and spliced to create an antibody of a different immunoglobulin class.

This is not the normal process by which DNA is cut. Usually, an enzyme cuts DNA based on a particular nucleotide sequence; the sequence acts as a signal to the enzyme, pointing to the precise place the cut is to be made. But in immunoglobulin class switching, Yu explains, there is no specific signaling sequence-instead, as the Keck School scientists proved in their paper, it is the mere physical presence of the R-loop that tells the enzymes where the cut is to be made. "The protein enzyme is not recognizing a sequence, but rather an altered DNA structure," Yu says.

This is also not the normal process by which DNA is transcribed. Generally, DNA being transcribed serves as a template for the creation of a protein or enzyme. The double-stranded DNA separates, and then an RNA strand begins to pair up with each individual DNA nucleotide on one of those strands, creating a sort of mirror image of the DNA; this is the transcript. During this process, only the leading edge of the RNA remains bonded to the DNA nucleotides it's transcribing. The rest of the RNA strand hangs off like the tail of a kite; when the RNA reaches the end of the stretch of DNA to be transcribed, the entire RNA strand drops away from the DNA and leaves the nucleus.

Not so in immunoglobulin production, says Yu. For one thing the part of the DNA that's transcribed during immunoglobulin class switching doesn't actually produce anything-it's called a silent transcript. And for another, the RNA strand remains firmly attached to each and every DNA nucleotide it touches-creating a sort of permanent RNA sandwich, with the RNA between two strands of DNA, though only attached to one of them. That's the R-loop. And it is what makes immunoglobulin class switching remarkable and unique.

"The whole process is more sophisticated than we first thought," Yu remarks.

And it may also be more illuminating than they thought. According to Yu and Lieber, the discovery of the R-loop may shed light on the development of B-cell cancers like myelomas. "We believe something may be going wrong during this class-switching recombination event that activates an oncogene," says Yu. "That is not proven yet, but it is something we will be looking at in the laboratory."

###

Kefei Yu, Frederic Chedin, Chih-Lin Hsieh, Thomas E. Wilson, Michael R. Lieber, "R-loops at immunoglobulin class switching regions in the chromosomes of stimulated B cells." Nature Immunology, http://www.nature.com/natureimmunology.


Story Source:

The above story is based on materials provided by University Of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University Of Southern California. "The Structure Behind The Switch: USC Researchers Uncover Mechanism Of Class-switching In Antibodies." ScienceDaily. ScienceDaily, 7 April 2003. <www.sciencedaily.com/releases/2003/04/030407080205.htm>.
University Of Southern California. (2003, April 7). The Structure Behind The Switch: USC Researchers Uncover Mechanism Of Class-switching In Antibodies. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2003/04/030407080205.htm
University Of Southern California. "The Structure Behind The Switch: USC Researchers Uncover Mechanism Of Class-switching In Antibodies." ScienceDaily. www.sciencedaily.com/releases/2003/04/030407080205.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins