Featured Research

from universities, journals, and other organizations

Researchers Find Protein Mechanism For Potential Atherosclerosis Development

Date:
April 14, 2003
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Inactivating a protein that helps regulate the proliferation of vascular cells increases the chance of developing atherosclerosis, a major cause of heart disease, researchers at UT Southwestern Medical Center at Dallas have discovered.

DALLAS – April 11, 2003 – Inactivating a protein that helps regulate the proliferation of vascular cells increases the chance of developing atherosclerosis, a major cause of heart disease, researchers at UT Southwestern Medical Center at Dallas have discovered.

Related Articles


Vascular vessels endure constant pounding and considerable stresses associated with blood flow. Vascular smooth muscle cells play an important role in the development of blood vessels, providing structural integrity and the ability to dilate and constrict. The low-density lipoprotein receptor-related protein (LRP1) helps regulate the proliferation and movement of these smooth muscle cells, presumably because LRP1 forms a complex with the receptor for platelet-derived growth factor (PDGF).

In findings reported in today’s issue of Science, a UT Southwestern research team led by Dr. Joachim Herz, professor of molecular genetics and in the Center for Basic Neuroscience, discovered that inactivating LRP1 in vascular smooth muscle cells caused the overexpression of PDGF receptor and abnormal PDGF receptor signaling in mice. Smooth muscle cells proliferated and the vessel wall became highly susceptible to cholesterol buildup.

“We used gene targeting to unravel a mechanism that controls and holds smooth muscle cell proliferation and migration in check,” said Dr. Philippe Boucher, postdoctoral researcher in molecular genetics and first author of the study. “This process is hyperactive in atherosclerosis.”

The absence of LRP1 is unlikely to occur in humans, Herz said, but the research emphasizes the importance of PDGF signaling in the development of atherosclerosis.

Atherosclerosis is a buildup of cholesterol and fatty substances in the lining of arteries. Smooth muscle cells respond to this buildup by proliferating and taking up more cholesterol, resulting in plaque formation. Continued expansion of this plaque leads to arterial obstruction, which often results in heart attack or stroke.

“We wanted to find out whether the smooth muscle cells would abnormally proliferate after LRP1 was inactivated. They do, and the vessel wall is very susceptible to high cholesterol,” said Herz.

The researchers also discovered that Gleevec – a drug used successfully to treat chronic myeloid leukemia – significantly reduced the development of the vessel abnormalities that lead to atherosclerosis. In cancer cells, Gleevec blocks certain signals and prevents a series of chemical reactions that cause cells to rapidly grow and divide.

“We effectively found that Gleevec could reduce atherosclerosis in our mouse models by about 50 percent,” Herz said.

Herz cautioned that the use of Gleevec in this research does not imply it is an alternative therapy for people with high cholesterol.

“It’s better to keep cholesterol levels down and prevent these pathways from being activated,” he said. “The key to preventing atherosclerosis has not changed. People need to keep their blood pressure down, control cholesterol and control diabetes.”

###Other UT Southwestern researchers involved in the study were Dr. Wei-Ping Li, assistant professor of cell biology; Dr. Richard Anderson, chairman of cell biology; and Dr. Michael Gotthardt, former postdoctoral researcher at UT Southwestern and now an assistant professor at the Max-Delbrόck Center in Berlin.

The research was supported by the National Institutes of Health, the Alzheimer’s Association and the Perot Family Foundation.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Find Protein Mechanism For Potential Atherosclerosis Development." ScienceDaily. ScienceDaily, 14 April 2003. <www.sciencedaily.com/releases/2003/04/030414083433.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2003, April 14). Researchers Find Protein Mechanism For Potential Atherosclerosis Development. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2003/04/030414083433.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Find Protein Mechanism For Potential Atherosclerosis Development." ScienceDaily. www.sciencedaily.com/releases/2003/04/030414083433.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) — Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) — Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins