Featured Research

from universities, journals, and other organizations

Novel Method Identifies 'Hidden' Genes

Date:
April 18, 2003
Source:
Whitehead Institute For Biomedical Research
Summary:
Scientists announced this week the development of a new computational method that provides a reliable way to estimate the total number of miRNA genes in different animals. The researchers used the tool to help identify 88 miRNA genes in the worm C. elegans, a model system important in the study of human genetics. They also estimate that miRNA genes comprise nearly one percent of the human genome, making miRNA genes one of the more abundant types of regulatory genes in humans.

Cambridge, Mass. (April 16, 2003) -- Once thought to serve only as a bridge between genes and protein production, RNA is quickly shedding its reputation as being all brawn and no brain. RNA's research renaissance is due in part to the recent discovery of a new class of genes called microRNAs (miRNAs). Rather than code for proteins, miRNAs serve as regulators--genetic trump cards that turn protein-coding genes off.

Scientists announced this week the development of a new computational method that provides a reliable way to estimate the total number of miRNA genes in different animals. The researchers used the tool to help identify 88 miRNA genes in the worm C. elegans, a model system important in the study of human genetics. They also estimate that miRNA genes comprise nearly one percent of the human genome, making miRNA genes one of the more abundant types of regulatory genes in humans. The next step, say researchers, is to investigate the roles they play in cell growth and development.

This work, from David Bartel's lab at the Whitehead Institute for Biomedical Research and Christopher Burge's lab at MIT, was published in the April 13 issue of Genes and Development.

"MicroRNAs have been controlling the regulation of other genes for a very long time," said Bartel. "Having this extra layer of gene regulation may have enabled the emergence of the multicellular body plans found in both plants and animals. The developmental processes that give rise to an adult plant or animal require a lot of turning on and off of genes."

For many years, miRNAs went undetected because they do not code for proteins--the benchmark traditionally used to define genes within a genome. Interest in RNA as a gene regulator began when researchers first discovered two small RNAs that impacted the translation of genes into proteins in worms. If these RNAs were missing, a worm's development stalled before it reached maturity.

These findings inspired researchers in Bartel's lab to take a closer look at this phenomenon. They found a new world of tiny regulatory RNAs present in a broad range of organisms, including worms, humans, fish and plants.

"The regulatory role for RNA had historically been under-appreciated, as researchers focused primarily on proteins as gene regulators. We are excited about the extent to which these small miRNAs also appear to be involved in normal gene regulation," said Bartel.

In March 2003, Bartel and Burge auditioned their new computational approach, called MiRscan. That work, published in the March 7 issue of Science, streamlined the search for miRNAs by giving researchers an estimate of how many miRNAs are nestled within the vertebrate genomes, such as those of humans and mice.

To generate this estimate, the researchers compared candidate miRNA sequences found in mice and humans to those found the puffer fish Fugu rubripes, a distant relative of mice and humans. Puffer fish share many of the same genes and regulatory sequences as humans, but have a much smaller genome, making it easier to identify key genes and regulatory sequences. The researchers found 15,000 genomic segments that were known to exist outside of the protein-coding regions in the human, mouse and puffer fish genomes but still appear to have been retained since the last common ancestor of fish and mammals.

Lee Lim, then a postdoctoral researcher in both the Bartel and Burge labs and the tool's chief architect, used MiRscan to cross-examine these 15,000 genomic segments and accurately predict which were likely to be microRNA genes. The researchers found most of the human microRNAs and estimated that there are at least 200 but no more than 250 human genes coding for microRNAs.

The paper published this week describes MiRscan and how it was developed to identify miRNAs in C. elegans. Bartel and his colleagues have now found and confirmed nearly 90 miRNA genes in C. elegans and estimate that there are fewer than 35 genes that remain either unconfirmed or undetected. The confirmed genes represent 48 gene families, of which 22 are conserved in humans. The researchers also report that each of these genes can be expressed at very high levels in the cells, with more than 1,000 miRNA molecules per cell and some miRNAs as abundant as 50,000 molecules per cell.

"The abundance of these tiny RNAs only increases the mystery as to why they hadn't been found earlier," says Bartel. The next step, he says, is to figure out the roles that microRNAs play in the machinery of cell growth and differentiation and find out what breaks down during disease. Bartel's lab has already made substantial progress towards this goal in plants, having matched up the first 16 microRNAs found in plants with target genes that they control.


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "Novel Method Identifies 'Hidden' Genes." ScienceDaily. ScienceDaily, 18 April 2003. <www.sciencedaily.com/releases/2003/04/030418081316.htm>.
Whitehead Institute For Biomedical Research. (2003, April 18). Novel Method Identifies 'Hidden' Genes. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2003/04/030418081316.htm
Whitehead Institute For Biomedical Research. "Novel Method Identifies 'Hidden' Genes." ScienceDaily. www.sciencedaily.com/releases/2003/04/030418081316.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins