Featured Research

from universities, journals, and other organizations

Scientists Discover Unique Source Of Postnatal Stem Cells in 'Baby' Teeth

Date:
April 22, 2003
Source:
NIH/National Institute Of Dental And Craniofacial Research
Summary:
Scientists report for the first time that "baby" teeth, the temporary teeth that children begin losing around their sixth birthday, contain a rich supply of stem cells in their dental pulp. The researchers say this unexpected discovery could have important implications because the stem cells remain alive inside the tooth for a short time after it falls out of a child's mouth, suggesting the cells could be readily harvested for research.

Scientists report for the first time that "baby" teeth, the temporary teeth that children begin losing around their sixth birthday, contain a rich supply of stem cells in their dental pulp. The researchers say this unexpected discovery could have important implications because the stem cells remain alive inside the tooth for a short time after it falls out of a child's mouth, suggesting the cells could be readily harvested for research.

Related Articles


According to the scientists, who published their findings online today in the Proceedings of the National Academy of Sciences, the stem cells are unique compared to many "adult" stem cells in the body. They are long lived, grow rapidly in culture, and, with careful prompting in the laboratory, have the potential to induce the formation of specialized dentin, bone, and neuronal cells. If followup studies extend these initial findings, the scientists speculate they may have identified an important and easily accessible source of stem cells that possibly could be manipulated to repair damaged teeth, induce the regeneration of bone, and treat neural injury or disease.

"Doctors have successfully harvested stem cells from umbilical cord blood for years," said Dr. Songtao Shi, a scientist at NIH's National Institute of Dental and Craniofacial Research (NIDCR) and the senior author on the paper. "Our finding is similar in some ways, in that the stem cells in the tooth are likely latent remnants of an early developmental process."

Shi and colleagues named the cells SHED, which stands for Stem cells from human exfoliated deciduous teeth. The term "deciduous teeth" is the formal name for what most people call colloquially "baby teeth." Children normally develop a set of 20 deciduous teeth, which appear after six months of life and generally are replaced, one tooth at a time, between age 6 and 12.

Shi said the unique acronym was needed to differentiate SHED from stem cells in adult tissues, such as bone or brain. "Stem cell research has exploded during the past seven or eight years, yet people still talk in general terms of postnatal and adult stem cells as though they are one and the same. Postnatal cells from children may act totally differently than adult stem cells, and we felt the inherent difference needed to be emphasized," said Shi.

Today's finding, as so often happens in science, stems from a chance interaction. As Shi recounts, it happened one evening when his then-six-year-old daughter, Julia, asked for help in pulling out a loose baby tooth. "Once it was out, we sat and looked carefully at the tooth," recalled Shi, a pediatric dentist. "I said, 'Wait a minute, there is some red colored tissue inside of the tooth,' so I took the tooth to my laboratory the next day and examined it. Sure enough, it had beautiful pulp tissue left over."

A few days later, when another of Julia's teeth came out, Shi said he was better prepared. He placed the tooth into a liquid medium used to culture cells, drove it to the laboratory, and extracted the dental pulp. Soon thereafter, he succeeded in isolating living stem cells from the tissue, a discovery that would lead to the collection of more exfoliated teeth from Julia and other children.

The group launched an initial round of studies to determine whether the cells would grow well in culture. Using dental pulp extracted from the children's exfoliated incisors, they discovered that about 12 to 20 stem cells from each tooth reproducibly had the ability to colonize and grow in culture.

"We also found the SHED behaved much differently than dental pulp stem cells from permanent teeth, which our group studied previously," said Dr. Masako Miura, an NIDCR scientist and a lead author on the study. "They exhibited an ability to grow much faster and doubled their populations in culture at a greater rate, suggesting SHED may be in a more immature state than adult stem cells."

Interestingly, Muria said she and her colleagues soon found these cells could be prompted to express proteins on their surface indicative of stem cells that were in the process of switching into bone and dental pulp cells. This discovery led to additional followup experiments, led by Dr. Bai Lu of NIH's National Institute of Child Health and Human Development (NICHD), to determine whether SHED also possessed the potential to switch into neural and fat cells. The groups found, under specific cell culture conditions, the cells responded accordingly, expressing a variety of proteins indicative of neural and fat cells. "These data are just the start," said Shi. "We're trying to characterize more fully which cell types can be generated from these stem cells. Can they be switched into nerve cells only? We need to find this out. We're also interested in determining the difference between adult dental pulp stem cells and those in deciduous teeth."

The NIDCR and NICHD are research components of the federal National Institutes of Health (NIH), part of the U.S. Department of Health and Human Services.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Dental And Craniofacial Research. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Dental And Craniofacial Research. "Scientists Discover Unique Source Of Postnatal Stem Cells in 'Baby' Teeth." ScienceDaily. ScienceDaily, 22 April 2003. <www.sciencedaily.com/releases/2003/04/030422075224.htm>.
NIH/National Institute Of Dental And Craniofacial Research. (2003, April 22). Scientists Discover Unique Source Of Postnatal Stem Cells in 'Baby' Teeth. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2003/04/030422075224.htm
NIH/National Institute Of Dental And Craniofacial Research. "Scientists Discover Unique Source Of Postnatal Stem Cells in 'Baby' Teeth." ScienceDaily. www.sciencedaily.com/releases/2003/04/030422075224.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Michigan Couple Celebrates Identical Triplets

Michigan Couple Celebrates Identical Triplets

AP (Feb. 25, 2015) A suburban Detroit couple who have two older children are adjusting to life after becoming parents to identical triplets _ a multiple birth a doctor calls rare. (Feb. 25) Video provided by AP
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins