Featured Research

from universities, journals, and other organizations

Study Finds Bile Acid Reduces Apoptosis; Protects Against Neurological Injury After Hemorrhagic Strokes In Rats

Date:
April 22, 2003
Source:
University Of Minnesota
Summary:
University of Minnesota researchers have found that a non-toxic bile acid produced in the body prevents apoptosis, or programmed cell death, in rats after a type of stroke, an intracerebral hemorrhage (ICH). The finding, published in the journal Proceedings of the National Academy of Sciences USA (PNAS) on April 21, may eventually lead to treatment in patients with hemorrhagic stroke and other acute brain injuries.

MINNEAPOLIS / ST. PAUL (April 18, 2003) -- University of Minnesota researchers have found that a non-toxic bile acid produced in the body prevents apoptosis, or programmed cell death, in rats after a type of stroke, an intracerebral hemorrhage (ICH). The finding, published in the journal Proceedings of the National Academy of Sciences USA (PNAS) on April 21, may eventually lead to treatment in patients with hemorrhagic stroke and other acute brain injuries. ICH is a devastating acute neurological disorder, currently without effective treatment, in which a significant loss of neuronal cells is thought to occur by apoptosis.

Related Articles


In the study, led by Clifford Steer, M.D., director of the University's molecular gastroenterology program, a dose of tauroursodeoxycholic acid (TUDCA) was administered into the carotid artery before or up to six hours after ICH in rats. Researchers found that TUDCA significantly reduced the injury associated with ICH.

"We found that apoptosis decreased by approximately 50 percent," said Steer, "and this translated into about a 50 percent decrease in lesion volume."

TUDCA is able to cross the blood / brain barrier, something many molecules are unable to do, resulting in decreased apoptosis in the section of the brain affected by ICH and improving the cell and neurological function in the rats. "We're extremely encouraged by the neuroprotective function of TUDCA and will be examining its potential in future studies," said Walter Low, Ph.D., professor of neurosurgery and co-investigator in the study.

"Not only does TUDCA cross the blood / brain barrier," said Steer, "but it also induces survival pathways in cells when they are injured and simultaneously inhibits the destructive pathways. This bile acid is particularly unique in its ability to maintain the integrity of mitochondria that is so important for normal cell function."

"What's exciting about TUDCA, in addition to its remarkable anti-apoptotic quality, is that it's made in our own bodies and causes no significant side effects when given as a drug to animals," says Steer. The bile acid's anti-apoptotic qualities were originally discovered in Steer's laboratory and have been found to be effective in inhibiting cell death in transgenic mice with Huntington's disease.

Orally administered ursodeoxycholic acid, the parent molecule, is already FDA-approved for the treatment of primary biliary cirrhosis.

Other authors of the study include Cecilia M.P. Rodrigues, Susana Sola, Zhenhong Nan, Rui E. Castro, and Paulo S. Ribeiro.


Story Source:

The above story is based on materials provided by University Of Minnesota. Note: Materials may be edited for content and length.


Cite This Page:

University Of Minnesota. "Study Finds Bile Acid Reduces Apoptosis; Protects Against Neurological Injury After Hemorrhagic Strokes In Rats." ScienceDaily. ScienceDaily, 22 April 2003. <www.sciencedaily.com/releases/2003/04/030422075329.htm>.
University Of Minnesota. (2003, April 22). Study Finds Bile Acid Reduces Apoptosis; Protects Against Neurological Injury After Hemorrhagic Strokes In Rats. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2003/04/030422075329.htm
University Of Minnesota. "Study Finds Bile Acid Reduces Apoptosis; Protects Against Neurological Injury After Hemorrhagic Strokes In Rats." ScienceDaily. www.sciencedaily.com/releases/2003/04/030422075329.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins