Featured Research

from universities, journals, and other organizations

Bone Marrow Stem Cells May One Day Help Treat Damaged Livers

Date:
May 15, 2003
Source:
Washington University School Of Medicine
Summary:
Research at Washington University School of Medicine in St. Louis suggests that stem cells from bone marrow or umbilical cord blood may be useful for treating people with liver damage due to cirrhosis, viral infection, trauma, chemotherapy or radiation therapy.

St. Louis, May 14, 2003 -- Research at Washington University School of Medicine in St. Louis suggests that stem cells from bone marrow or umbilical cord blood may be useful for treating people with liver damage due to cirrhosis, viral infection, trauma, chemotherapy or radiation therapy.

Related Articles


The study, done in immune deficient mice, showed that human stem cells that normally produce blood cells also can form liver-like cells in a damaged liver. The findings are published in the May 15 issue of the journal Blood.

"There is a huge demand for liver transplants but there are never enough organs, and the procedure is not always successful," says study leader Jan A. Nolta, Ph.D., associate professor of medicine. "We're hoping that in the future we can use bone marrow or umbilical cord blood stem cells from matched donors to help treat liver disease and reduce the need for liver transplants."

Nolta and her colleagues isolated highly purified human stem cells from bone marrow and umbilical cord blood and transplanted them into immune-deficient mice. The purified stem cells normally give rise to cells that mature into red blood cells and white blood cells.

A month later, after the human stem cells had established themselves in the animal's bone marrow, the investigators induced liver damage. Some mice also were given human hepatocyte growth factor to increase the number of stem cells that developed, or differentiated, into liver cells (also known as hepatocytes).

A month after inducing the liver damage, the investigators compared the damaged organs to healthy ones from control mice that also had been transplanted with human stem cells. They tested the livers for the presence of human albumin, a protein produced only by liver cells. Any human albumin found in these mice would have to have come from transplanted human stem cells that had developed into liver-like cells.

Nolta and her colleagues found the greatest number of human-albumin-producing cells in the damaged livers of mice that had been treated with human hepatocyte growth factor. In some cases, albumin began showing up as early as five days after treatment. The number of stem cells that had differentiated into liver-like cells was low, however, making up less than 1 percent of all liver cells. Human albumin was not detected in mice with healthy livers.

The investigators believe that the stem cells moved from the bone marrow into the circulating blood, then left the blood to reside in the damaged liver, where they became liver-like cells that produced human albumin.

"These results show that human stem cells from bone marrow and umbilical cord blood are a potential source of liver cells," says Nolta, who also is a member of the Hematopoietic Development and Malignancy Research Program at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The study also represents the first successful animal model for studying how stem cells from human bone marrow and umbilical cord blood might be used to treat liver disease.

Nolta and her colleagues now are working to increase the number of human stem cells that differentiate into liver cells in this model by studying the signals that draw the cells into the liver and control their transformation, a feature known as stem-cell plasticity. In addition, they are investigating the use of blood-forming stem cells for the repair of heart and skeletal muscle.

###

Wang X, Ge S, McNamara G, Hao Q-L, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood, 101 (10), 4201-4208, May 15, 2003.

Funding from the National Heart, Lung, and Blood Institute and from the National Institute of Diabetes and Digestive and Kidney Diseases supported this research.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Bone Marrow Stem Cells May One Day Help Treat Damaged Livers." ScienceDaily. ScienceDaily, 15 May 2003. <www.sciencedaily.com/releases/2003/05/030515074503.htm>.
Washington University School Of Medicine. (2003, May 15). Bone Marrow Stem Cells May One Day Help Treat Damaged Livers. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2003/05/030515074503.htm
Washington University School Of Medicine. "Bone Marrow Stem Cells May One Day Help Treat Damaged Livers." ScienceDaily. www.sciencedaily.com/releases/2003/05/030515074503.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins