Featured Research

from universities, journals, and other organizations

Misbehaving Molecules In ALS; 3-dimensional Pictures Of ALS Mutant Proteins Support Two Major Theories About How The Disease Is Caused

Date:
May 19, 2003
Source:
NIH/National Institute Of Neurological Disorders And Stroke
Summary:
A new study reveals for the first time how gene mutations lead to the inherited form of amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease. The study suggests that the two most prominent theories of how familial ALS (FALS) and other related diseases develop are both right in part.

A new study reveals for the first time how gene mutations lead to the inherited form of amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease. The study suggests that the two most prominent theories of how familial ALS (FALS) and other related diseases develop are both right in part.

"No one has ever demonstrated at the molecular level how ALS mutations might lead to disease," says study author John Hart, Ph.D., director of the University of Texas Health Science Center X-ray Crystallographic Core Laboratory in San Antonio. "Using a technique commonly used in structural biology, we could see the intimate details of how toxic familial ALS proteins interact. And we found out that the proteins are interacting in a way they shouldn't be." The study was funded by the National Institute of Neurological Disorders and Stroke and appears in the June 2003 issue of Nature Structural Biology.

ALS is a progressive, fatal neurological disease that usually strikes in mid-life. It causes muscle weakness, leads to paralysis, and usually ends in death within 2 to 5 years of diagnosis. Affecting as many as 20,000 Americans, ALS occurs when specific nerve cells in the brain and spinal cord that control voluntary movement gradually degenerate.

About 10 percent of ALS cases are familial ALS. Only one parent needs to have FALS to pass it on to his or her children, although men are about one-and-a-half times more likely to develop the disease than women. Studies that reveal how FALS develops may give researchers new clues about the other 90 percent of ALS cases – known as sporadic ALS – and other neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases.

Scientists studying FALS patients have identified more than 90 mutations in the gene that directs the production of the protein copper-zinc superoxide dismutase (SOD1). In FALS, proteins accumulate in a way they shouldn't to form large protein complexes. Scientists believe these complexes interfere with nerve cell transport, cellular waste management, and other cellular activities that prevent cell death. Similar large protein complexes have been implicated in other neurodegenerative diseases.

Using a 3-dimensional imaging technique called x-ray crystallography, Dr. Hart and his colleagues compared the interactions among proteins in the FALS mutant protein complexes to interactions among normal proteins.

Normally, proteins protect themselves from sticking to one another by covering their edges with loop-shaped ends. The researchers found that in the mutant proteins, the loops were in the wrong position. This loss of protection appears to lead to the toxic accumulation of proteins in FALS. The finding reveals a new mechanism for researchers to exploit in their efforts to find ways to prevent or treat neurodegenerative diseases.

For years scientists have speculated about the disease mechanisms in ALS. Researchers initially thought that the FALS mutation in SOD1 led to a decrease in SOD1 activity and subsequent oxidative damage to cells. But a recent study disproved the idea, showing that mice completely lacking SOD1 lived to adulthood without developing movement disorders. Mice with the human FALS -SOD1 mutation, however, became paralyzed despite normal SOD1 levels.

Scientists now have two primary theories for why the mere presence of the mutant SOD1 protein seems to cause FALS without interfering with SOD1 activity.

The new oxidative damage theory holds that mutant SOD1 proteins produce chemicals called oxidants that damage and kill cells. In a nutshell, the SOD1 protein needs to bind to a reactive metal in order to form loops to protect its edges. The oxidants, however, often damage the mutant SOD1 protein itself, interfering with metal binding and leaving the protein unprotected.

The aggregation theory, on the other hand, maintains that mutant SOD1 proteins fold improperly, causing them to stick together and form large toxic protein complexes. Researchers believe that those protein complexes interfere specifically with transport machinery within the nerve cells that control voluntary movement.

A recently substantiated addition to the aggregation theory, suggested by studies in Parkinson's and Alzheimer's Diseases, is that pore-like precursors of the protein aggregates – not the aggregates themselves – may be killing the nerve cells. In this study, Dr. Hart and Dr. Samar Hasnain saw those helical, pore-like precursors using x-ray crystallography, providing striking evidence implicating the aggregation theory in ALS.

"Our study provides a model for how protein aggregation in FALS occurs," says Dr. Hart. "But it also suggests that deadly oxidative chemistry can lead to metal loss which in turn can lead to aggregation. These are very exciting findings, because we have 3-D pictures that support two separate hypotheses."

These findings offer a unique contribution to the enormous effort to understand not only the causes of, but also the possible ways to treat or prevent FALS and other neurodegenerative disorders.

"If we can understand what is going on at the molecular level, we may eventually be able to develop a drug to prevent the defect that leads to disease," says study co-author Jennifer Stine Elam, a graduate student in Dr. Hart's laboratory.

The NINDS is a component of the National Institutes of Health within the Department of Health and Human Services and is the nation's primary supporter of biomedical research on the brain and nervous system.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Neurological Disorders And Stroke. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Neurological Disorders And Stroke. "Misbehaving Molecules In ALS; 3-dimensional Pictures Of ALS Mutant Proteins Support Two Major Theories About How The Disease Is Caused." ScienceDaily. ScienceDaily, 19 May 2003. <www.sciencedaily.com/releases/2003/05/030519082525.htm>.
NIH/National Institute Of Neurological Disorders And Stroke. (2003, May 19). Misbehaving Molecules In ALS; 3-dimensional Pictures Of ALS Mutant Proteins Support Two Major Theories About How The Disease Is Caused. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2003/05/030519082525.htm
NIH/National Institute Of Neurological Disorders And Stroke. "Misbehaving Molecules In ALS; 3-dimensional Pictures Of ALS Mutant Proteins Support Two Major Theories About How The Disease Is Caused." ScienceDaily. www.sciencedaily.com/releases/2003/05/030519082525.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins