Featured Research

from universities, journals, and other organizations

Possible New Cell Type Found In Developing Inner Ear

Date:
June 12, 2003
Source:
Medical College Of Georgia
Summary:
The answer to how the complex, cavernous inner ear forms from a mostly homogenous group of cells may be that it doesn't, says a Medical College of Georgia researcher who has found a new cell type that appears to migrate to the developing ear.

The answer to how the complex, cavernous inner ear forms from a mostly homogenous group of cells may be that it doesn't, says a Medical College of Georgia researcher who has found a new cell type that appears to migrate to the developing ear.

Dr. Paul Sohal first saw the cells he named ventrally emigrating neural tube cells in 1995, following the path of newly formed nerves out of the developing neural tube.

His research published in the June issue of the International Journal of Developmental Neuroscience says one place VENT cells go is to the developing inner ear.

"One thing which has been a puzzle was how can a single source of cells gives rise to entirely different systems, functionally different systems," Dr. Sohal, developmental biologist, says of the inner ear which is believed to be formed from the same cells that form the outer layer of skin or epidermis. The only other cell believed to be in the region is the pigment-producing melanocyte.

By day two of development in the chick embryo, Dr. Sohal's animal model, the neural tube – a tubular structure that gives rise to the brain and spinal cord – has formed and is covered with a skin called the surface ectoderm. That same day, an area of the skin on either side and about midway down the neural tube begins to thicken into what is known as an auditory placode. This thickened area begins to move inward, eventually working free from surrounding tissue and, by day three, forms the otic vesicle that will become the inner ear. In humans this should happen in the second month of development.

"What we have found is that, at this stage, VENT cells begin to move in from the neural tube and mix with these cells," Dr. Sohal says. He believes VENT cells provide a heterogeneous mix to the epidermal cells, which could help explain the ability of cells within the region to form so many different types of tissue.

The developed inner ear is a complex structure that enables hearing and balance. The visible outer ear focuses sound to the middle then inner ear, which contain the eardrum and three bones that convert sound energy into mechanical energy. The movement of the bones applies pressure to the cochlea, a snail-shaped, fluid-filled organ, converting sound to a stimulus that triggers the hair cells. The hair cells – which can be lost to disease, trauma or a congenital defect – are activated and send signals to the nerve and eventually the brain where sound is perceived.

Dr. Sohal has published studies that show VENT cells in many areas of the body, most recently in the heart, small intestines and stomach. Still, he is meeting with resistance from some fellow scientists who are skeptical that he has found the first new cell type to be identified in the embryo since 1868. Some say the cells are simply experimental artifacts.

He believes they are much more, that the cells not only can form the four major types of body tissue but that they are the source of stem cells.

"The data is intriguing," says Dr. David J. Kozlowski, developmental geneticist at MCG who is studying hair cell regeneration within the zebrafish inner ear to try to understand how hair cells regenerate in fish and not mammals.

Dr. Kozlowski, who also directs MCG's Transgenic Zebrafish Core Facility, is looking for VENT cells in the zebrafish, another developmental model, to see if he can document their existence. "It's certainly worth investing some effort to see if they exist in fish and, if they do, where do they go," he says.

Dr. Sohal, undaunted most days, says the ubiquitous cells go pretty much everywhere, at least everywhere he has looked to date. "I think this tells us they are a general phenomenon, that the cells have a fundamental role."

Back inside the ear, Dr. Sohal is now looking to determine if VENT cells are part of functional units within the inner ear. "What we have to do is find out where they end up. Are they part of the cochlea? Are they part of the sensory organs?" he says.

His work is funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Medical College Of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College Of Georgia. "Possible New Cell Type Found In Developing Inner Ear." ScienceDaily. ScienceDaily, 12 June 2003. <www.sciencedaily.com/releases/2003/06/030612090940.htm>.
Medical College Of Georgia. (2003, June 12). Possible New Cell Type Found In Developing Inner Ear. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2003/06/030612090940.htm
Medical College Of Georgia. "Possible New Cell Type Found In Developing Inner Ear." ScienceDaily. www.sciencedaily.com/releases/2003/06/030612090940.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins