Featured Research

from universities, journals, and other organizations

Tipping The Balance Of Prion Infectivity

Date:
August 25, 2003
Source:
Howard Hughes Medical Institute
Summary:
Two important questions face biologists studying the infectious proteins called prions: What stops prions that infect one species from infecting another species and what causes the invisible transmission barrier between species to fail sometimes?

Two important questions face biologists studying the infectious proteins called prions: What stops prions that infect one species from infecting another species and what causes the invisible transmission barrier between species to fail sometimes?

In experiments with yeast prions reported in this week's issue of Nature, Howard Hughes Medical Institute researchers have shown how point mutations in prions -- which do not compromise their infectivity -- can nevertheless cause prions to alter the specificity of the yeast strain that they infect.

According to the researchers, their findings point the way to studies that could begin to clarify the factors that determine whether a prion specific to cattle that causes bovine spongiform encephalopathy (BSE), or mad cow disease, might become infectious to humans.

The studies also suggest a new approach for treating disorders such as Alzheimer's disease that involve aberrant protein folding, said the researchers. It might be possible to develop drugs that would influence toxic proteins that aggregate into brain-clogging plaque to fold into less toxic versions, they said.

The researchers, which included Howard Hughes Medical Institute (HHMI) investigator Jonathan Weissman, Peter Chien, HHMI predoctoral fellow Angela DePace and Sean Collins at the University of California, San Francisco, reported their findings in the August 21, 2003, issue of the journal Nature.

Unlike bacteria and viruses, prions consist only of aberrant proteins that misfold themselves into forms that, in turn, induce their normal counterparts to misfold. In mammalian prion infections, these abnormal, insoluble proteins trigger protein clumping that can kill brain cells. In humans, clumping causes fatal brain-destroying human diseases such as Creutzfeldt-Jakob disease and kuru, and in animals it causes BSE and scrapie.

In the yeast cells used as research models by Weissman and his colleagues, the insoluble prion merely alters a cell's metabolism. In previous studies of yeast prions, Weissman and his colleagues created a "chimeric" prion consisting of stitched-together pieces of prions that infected either of two yeast strains -- Saccharomyces cerevisiae (Sc) or Candida albicans (Ca). The researchers found this chimeric protein to be "promiscuous" -- capable of infecting either strain of yeast, depending on which one it was introduced into. The chimeric protein gave the researchers an opportunity to explore in detail why transmission barriers exist in yeast prions, which may help researchers understand the basis of species barriers that affect mammalian prions.

"It was known that very small mismatches, only a few amino acids, in a prion protein could cause a transmission barrier," said Weissman. "It was also known that some proteins can misfold into multiple different types of prions, and that the specific shape of a prion is a key determinant of transmission barriers. But what wasn't understood was why, when you change the sequence, you would get a new transmission barrier."

In their initial experiments, working with pure proteins, the researchers found that even changes in temperature could affect which infective form their chimeric prion assumed. Thus, they theorized, subtle mutations could cause species specificity by favoring one folded form over another.

"We hypothesized that if something as minor as a slight temperature change could affect which misfolded form the prion went into, if we could slow down which folding route the prion took, we could change the specificity of its infectivity," said Weissman.

"It's like the Pachinko game in which a ball flipped into play can fall into one of a number of wells," said. "A mutation in the prion produces a preferred misfolding -- like tipping the Pachinko ball one way or another so that it affects which well the ball tends to fall into."

To explore their hypothesis, the researchers created subtle mutations in the chimeric prion. These mutations caused the prion to be slower in adopting the folded conformation that infected either the Sc or Ca strains of yeast. They found that these mutations created a transmission barrier -- such that for example, the chimeric prion mutated to favor the Sc-infecting form no longer infected the Ca yeast strain. Importantly, the researchers found this effect both in test tube mixtures of the prions and in the yeast cell cultures themselves.

The findings emphasize the importance of looking beyond just the sequence of a prion protein in asking whether species barriers might be crossed. "Practically speaking, these findings mean that you can't just ask the question of whether people are protected from mad-cow disease because cows are different from people," Weissman said. "Rather, the answer depends on which type of cow prion it is. Studies must focus as much on the strain of the misfolded form as on what animal it is coming from.

"Our studies of yeast prions argue in a very concrete and definitive way -- together with the extensive animal studies of mammalian prions -- that this mutational effect on conformation is a major mechanism driving the origin of species barriers. And these findings begin to answer some of the questions of why new species barriers arise so quickly," said Weissman.

Since the aggregation of misfolded amyloid proteins into pathological plaques also causes Alzheimer's and Parkinson's disease, said Weissman, the studies may suggest a new route to treating such disorders. Rather than seeking to prevent formation of amyloid plaques, drug treatments might aim at influencing the amyloid proteins to form less toxic products.

"The thinking in the field has now evolved to recognize that not all misfolded proteins are equally bad," said Weissman. "So, a general strategy for treating or preventing diseases of misfolding might concentrate on small-molecule compounds that influence protein folding to favor non-toxic over toxic misfolded forms."


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Tipping The Balance Of Prion Infectivity." ScienceDaily. ScienceDaily, 25 August 2003. <www.sciencedaily.com/releases/2003/08/030821074427.htm>.
Howard Hughes Medical Institute. (2003, August 25). Tipping The Balance Of Prion Infectivity. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2003/08/030821074427.htm
Howard Hughes Medical Institute. "Tipping The Balance Of Prion Infectivity." ScienceDaily. www.sciencedaily.com/releases/2003/08/030821074427.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins